scholarly journals Design and Implementation of a Tether-Powered Hexacopter for Long Endurance Missions

2021 ◽  
Vol 11 (24) ◽  
pp. 11887
Author(s):  
Kai-Hung Chang ◽  
Shao-Kang Hung

A tether-powered unmanned aerial vehicle is presented in this article to demonstrate the highest altitude and the longest flight time among surveyed literature. The grid-powered ground station transmits high voltage electrical energy through a well-managed conductive tether to a 2-kg hexacopter hovering in the air. Designs, implementations, and theoretical models are discussed in this research work. Experimental results show that the proposed system can operate over 50 m for 4 h continuously. Compared with battery-powered multicopters, tether-powered ones have great advantages on specific-area long-endurance applications, such as precision agriculture, intelligent surveillance, and vehicle-deployed cellular sites.

Author(s):  
Ching-Wei Chang ◽  
Li-Yu Lo ◽  
Hiu Ching Cheung ◽  
Yurong Feng ◽  
An-Shik Yang ◽  
...  

This work aims to develop an autonomous system for the unmanned aerial vehicle (UAV) to land on a moving platform such as the automobile or marine vessels, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Different from most state-of-the-art UAV landing frameworks which rely on UAV’s onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such novel configuration can therefore lighten the burden of the UAV and computation power on the ground vehicle/marine vessel could be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted and the result shows that a precise autonomous landing on a 43 X 43 cm platform could be performed.


2020 ◽  
Vol 32 ◽  
pp. 99-109
Author(s):  
Dimo Zafirov

The article presents an algorithm for development of a Long endurance electric multirotor unmanned aerial vehicle. Calculations for usage of different types of electric batteries have been made and dependencies of flight time for different weights of batteries have been obtained. Options for quadcopter and sixcopter have been considered.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 260 ◽  
Author(s):  
Abdulla Al-Kaff ◽  
Ángel Madridano ◽  
Sergio Campos ◽  
Fernando García ◽  
David Martín ◽  
...  

The advances in autonomous technologies and microelectronics have increased the use of Autonomous Unmanned Aerial Vehicles (UAVs) in more critical applications, such as forest fire monitoring and fighting. In addition, implementing surveillance methods that provide rich information about the fires is considered a great tool for Emergency Response Teams (ERT). From this aspect and in collaboration with Telefónica Digital España, Dronitec S.L, and Divisek Systems, this paper presents a fire monitoring system based on perception algorithms, implemented on a UAV, to perform surveillance tasks allowing the monitoring of a specific area, in which several algorithms have been implemented to perform the tasks of autonomous take-off/landing, trajectory planning, and fire monitoring. This UAV is equipped with RGB and thermal cameras, temperature sensors, and communication modules in order to provide full information about the fire and the UAV itself, sending these data to the ground station in real time. The presented work is validated by performing several flights in a real environment, and the obtained results show the efficiency and the robustness of the proposed system, against different weather conditions.


2013 ◽  
Vol 465-466 ◽  
pp. 345-351 ◽  
Author(s):  
Parvathy Rajendran ◽  
Howard Smith

Unmanned Aerial Vehicle (UAV) has an enormous role to both military and civilian missions. However, a short range endurance of current UAV system affects the life expediency, data monitoring, and output performance of a mission. This is due to having UAVs that are dependent on batteries. The weight of the battery and low temperature environment has undoubtedly been the main cause for the poor UAV performance. In spite of its prolific improvement in UAV system, the endurance permissible is between 45 minutes to 4 hours. Therefore, this situation makes battery no longer attractive to be widely used for UAV. Lately attention has been focused on the use of solar cell in UAV in replacement to battery as its power system. Nevertheless, current solar cells characteristic and efficiency is insufficient to sustain a long endurance flight. This is due to failure to identify an appropriate selection of material and parts in designing the UAVs solar augmented power module system. Therefore, comprehensive work on the solar power system and its integration is essential for an excellent UAV performance. Thus, a research work has been done to studies on the design of a solar and battery power system for an electric UAV. Subsequently, a small solar powered electric UAV has been developed. As a result, the UAVs specification, layout and systems description are presented extensively in this paper. This UAV has enabled an understanding how the solar augmented system has enhanced the endurance performance the electric UAV to almost 24 hours. Moreover, this UAV has 5 successfully flight up till date with useful data that predicted this UAV aerodynamic characteristic.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


2018 ◽  
Vol 778 ◽  
pp. 181-186 ◽  
Author(s):  
Tayyaba Malik ◽  
Shayan Naveed ◽  
Muhammad Muneer ◽  
Mohammad Ali Mohammad

Recently, supercapacitors have attracted a tremendous amount of attention as energy-storage devices due to their high-power density, fast charge–discharge ability, excellent reversibility, and long cycling life. In this research work, we demonstrate a laser scribed super capacitor based on polyimide (PI) substrate for the storage of electrical energy. PI substrate of thickness 200μm and area 1cm × 1cm was reduced by a laser engraver with a 450 nm wavelength in the form of stackable supercapacitor electrodes. Although, PI itself exhibits non-conductive behavior; however, by laser irradiation we change the surface properties of PI and reduce its resistance. The chemical property of irradiated PI was characterized with XRD where the carbon peak was observed at 2*theta = 25.44, which confirms the reduction of PI material in to a graphene-like substance. The electrical conductivity was analyzed with a probe station and observed to be 1.6mS. Two conductive regions were assembled into a capacitor device by sandwiching a PVA/H3PO4 electrolyte in between. During the charging and discharging characterization of the capacitor device, current density was observed to be 1.5mA/cm2. Capacitance versus voltage analysis was carried out and the device showed 75mF/cm2 against a voltage sweep of ±2V. The galvanostatic charging and discharging curve shows a symmetric behavior with respect to time exhibiting the stability and durability of the device.


2018 ◽  
Vol 90 (7) ◽  
pp. 1077-1087 ◽  
Author(s):  
Pericles Panagiotou ◽  
Efstratios Giannakis ◽  
Georgios Savaidis ◽  
Kyros Yakinthos

Purpose The purpose of this paper is to present the preliminary design of a medium altitude long endurance (MALE) unmanned aerial vehicle (UAV), focusing on the interaction between the aerodynamic and the structural design studies. Design/methodology/approach The classic layout theory was used, adjusted for the needs of unmanned aircraft, including aerodynamic calculations, presizing methods and CFD, to estimate key aerodynamic and stability coefficients. Considering the structural aspects, a combination of layout, finite element methods and custom parameterized design tools were used, allowing automatic reshapes of the skin and the internal structural parts, which are mainly made of composite materials. Interaction loops were defined between the aforementioned studies to optimize the performance of the aerial vehicle, maximize the aerodynamic efficiency and reduce the structural weight. Findings The complete design procedure of a UAV is shown, starting from the final stages of conceptual design, up to the point where the detail design and mechanical drawings initiated. Practical implications This paper presents a complete view of a design study of a MALE UAV, which was successfully constructed and flight-tested. Originality/value This study presents a complete, synergetic approach between the configuration layout, aerodynamic and structural aspects of a MALE UAV.


2018 ◽  
Vol 90 (5) ◽  
pp. 858-868 ◽  
Author(s):  
Muhammad Taimoor ◽  
Li Aijun ◽  
Rooh ul Amin ◽  
Hongshi Lu

Purpose The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft. Design/methodology/approach In this paper, the LQR-based Luenberger observer is deliberated for autonomous level flight of unmanned aerial vehicle (UAV) which has been attained productively. Various modes like phugoid and roll modes are exploited for controlling the rates of UAV. The Luenberger observer is exploited for estimation of the mysterious states of the system. The rates of roll, yaw and pitch are used as an input to the observer, while the remaining states such as velocities and angles have been anticipated. The main advantage of using Luenberger observer was to reduce the cost of the system which has been achieved lucratively. The Luenberger observer proposes sturdiness at the rate of completion to conquest over the turmoil and insecurities to overcome the privileged recital. The FlightGear simulator is exploited for the endorsement of the recital of the Luenberger observer-based autopilot. The level flight has been subjugated lucratively and has been legitimated by exploiting the FlightGear simulator. The authenticated and the validated results are offered in this paper. Microsoft Visual Studio has been engaged as a medium between the MATLAB and FlightGear Simulator. Findings The suggested observer based on LQR ensures the lucrative approximation of the unknown states of the system as well as the successful level flight of the system. The Luenberger observer is used for approximation of states while LQR is used as controller. Originality/value In this research work, not only the estimation of unknown states of both longitudinal and lateral model is made but also the level flight is achieved by using those estimated states and the autopilot is validated by using the FlightGear, while in most of the research work only the estimation is made of only longitudinal or lateral model.


Sign in / Sign up

Export Citation Format

Share Document