scholarly journals Effect of Surface Roughness on Ultrasonic Testing of Back-Surface Micro-Cracks

2018 ◽  
Vol 8 (8) ◽  
pp. 1233 ◽  
Author(s):  
Zhe Wang ◽  
Ximing Cui ◽  
Hongbao Ma ◽  
Yihua Kang ◽  
Zhiyang Deng

Surface roughness is one of the main factors that affect the ultrasonic testing of micro-cracks. This article theoretically analyzes the relationship between the changes in the energy intensity of crack echo waves and roughness-modified transmission coefficients. A series of simulations are carried out using two-dimensional sinusoidal curves as rough surface. Then, parallel experiments are performed on sample surfaces with different arithmetic average heights (Ra). The signal amplitude ratio factor (SARF) is defined to assess the ultrasonic detection capacity for micro-cracks. Both finite element analysis and experimental results show that signal amplitude decreases with an increase in Ra, resulting in signal-to-noise ratio loss. Amplitude attenuation caused by the rough back surface is less than that caused by the rough front surface. It is difficult to identify the signal of micro-cracks with a depth less than 400 μm when the Ra of the front surface is larger than 15 μm. Cracks with depths of more than 200 μm can be distinguished when the back-surface roughness is less than 24 μm. Furthermore, the amplitude of the micro-crack signal increases slightly with variation in the horizontal parameter (Rsm). This study provides a valuable reference for the precision evaluation of micro-cracks using ultrasonic inspection.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad-Reza Sedaghat ◽  
Hamed Momeni-Moghaddam ◽  
Cynthia J. Roberts ◽  
Nasim Maddah ◽  
Renato Ambrósio ◽  
...  

AbstractCorneal biomechanical parameters were compared in 100 keratoconus eyes with abnormal elevation on the back corneal surface only (group 1), versus both the back and front surfaces (group 2). Scheimpflug tomography with Pentacam HR, corneal biomechanical assessments using Corvis ST and Ocular Response Analyzer (ORA) and corneal epithelium thickness maps using anterior segment optical coherence tomography were assessed. There were no significant differences in the IOP measured using Corvis ST and ORA, age or sex between the two groups. Statistically significant differences were found in all corneal shape parameters and all new parameters of Corvis ST: corneal stiffness parameter at first applanation (SP-A1), integrated inverse radius (IR) and deformation amplitude ratio (DAR)) between groups (p < 0.001). The classic parameters of ORA including corneal hysteresis (CH) and corneal resistance factor (CRF) were about 1.00 mmHg higher in group 1 (p < 0.001). In conclusion, keratoconus eyes with abnormal elevation limited to the back corneal surface have lower grade, stiffer corneal biomechanical parameters and less asymmetric shape. This is consistent with progressive biomechanical weakening from the first detectable back surface elevation to manifestation on the front surface as the severity overwhelms the ability of the epithelium to compensate.


Author(s):  
Cameron P. Lonsdale ◽  
Brian T. Tusa ◽  
Steven L. Dedmon

North American freight car axles are one of the most robust mechanical components in railway service. Axles can be in service for many years (several decades in some cases) and undergo millions of fatigue cycles under heavy axle loads. Although for rotating bending fatigue the central axis is a zero stress location, larger internal central axis discontinuities will experience finite cyclic stress levels as the radial distance increases from the central axis. Larger internal discontinuities at the axle central axis, caused by forging bursts or unhealed pipe, are not a common occurrence; however they are irregularly shaped and represent a possible source of fatigue crack initiation. This paper describes efforts to quantify stresses at central axis discontinuities of various different sizes using finite element analysis (FEA) computer simulations. Also, the paper reviews the radial ultrasonic inspection of a large group of axles and subsequent destructive testing to examine the physical size of indications found using the ultrasonic techniques. Recommendations for radial ultrasonic testing of newly manufactured and second hand axles are provided, and changes to appropriate Association of American Railroads (AAR) axle specifications are outlined.


2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


2020 ◽  
pp. 46-52
Author(s):  
N.P. Aleshin ◽  
D.M. Kozlov ◽  
L.YU. Mogilner

The reliability of ultrasonic testing (UT) of the quality of welded joints of polyethylene pipelines, made end-to-end with a heated tool, is considered in comparison with mechanical tests and radiography. The greatest detection of solid defects is provided by ultrasonic inspection with the use of chord tipe probes (not less than 90 %). When detecting defects translucent for ultrasound (lack of penetration, lack of fusion, etc.), the reliability decreases to 70÷80 %. Keywords: welding, polyethylene pipeline, quality control, ultrasonic testing, chord tipe probe. [email protected]


2019 ◽  
Vol 799 ◽  
pp. 20-25
Author(s):  
Harri Lille ◽  
Alexander Ryabchikov ◽  
Jakub Kõo ◽  
Valdek Mikli ◽  
Eron Adoberg ◽  
...  

In this study we determined average residual stresses in hard nitride PVD AlCrN, TiAlN and TiCN coatings through simultaneous measurement of length variation in thin-walled tubular substrates and of the curvature of plate substrates. A device for measurement of the length of the tube was developed. Inside the depositing chamber the tube and the plate were fixed parallel in the relation to the axis of the rotating cathode. One batch of plate samples was produced by deposition on front surface (facing the cathode) and the other batch, by deposition on back surface (with back to the cathode). The cross-sectional microstructure and thickness of the coatings were investigated by means of scanning electron microscopy (SEM). The thicknesses of the coatings deposited on front and back surfaces of the plates and on the tube were significantly different. The values of average compressive residual stresses, determined by both methods, were very high irrespective of coating thickness. It was found that the values of compressive residual stresses in the coating were dependent on the shape of the substrate and on its position in the relation to the axis of the rotating cathode.


Sign in / Sign up

Export Citation Format

Share Document