scholarly journals Characterization for Disposal of the Residues Produced by Materials Used as Solid Oxygen Carriers in an Advanced Chemical Looping Combustion Process

2018 ◽  
Vol 8 (10) ◽  
pp. 1787
Author(s):  
Adriana Carrillo ◽  
Carmen Forero

Chemical looping combustion (CLC) is a technology that is part of the capture and storage of CO2 through the combustion with solid oxygen carriers (OCs). It is considered an energy-efficient alternative to other methods, since it is a technology that inherently separates CO2 and has the advantage of not requiring additional energy for this separation. The key to the performance of CLC systems is the OC material. Low-cost materials, i.e., natural minerals rich in metal oxides (chromite, ilmenite, iron, and manganese oxides) were used in this investigation. These may contain traces of toxic elements, making the carrier residues hazardous. Therefore, the oxidized and reduced-phase residues of six OCs, evaluated in a discontinuous batch fluidized bed reactor (bFB) using methane and hydrogen as the reducing gas, were characterized by several techniques (crushing strength, SEM, XRD, and XRF). The researchers found that, in general terms, the residues present a composition very similar to that reported in the fresh samples, and although they contain traces of Ba, Cu, Cr, Ni or Zn, these compounds do not migrate to the leachate. It was mainly found that, according to the current regulations, none of the residues are classified as toxic, as they do not exceed the permissible limits of metals (100 and 5 mg/L for Ba and Cr, respectively), with 3.5 mg/L the highest value found for Ba. Thus, they would not have a negative impact on the environment when disposed of in a landfill.

Author(s):  
Nur Adibah Mohd Ghazalia Et.al

Chemical looping combustion (CLC) is known as a low-cost strategy for the capture of carbon dioxide for fuel combustion. In CLC process, oxygen carriers (OCs) are the cornerstone and play a vital role in defining reaction process. The aim of the present work was to investigate the potential of niobium (Nb) as a promoter on the -Al2O3 and its behavior as an oxygen carrier for chemical looping combustion process. In this work, the Nb loading was varied between 5 – 15 wt. %.  Their behavior in CLC was analyzed by TPR, TPO, SEM and TGA. From the TPR results, the reduction temperature for 5 wt.%, 10 wt.% and 15 wt.% Nb loading were 560 ℃, 529 ℃ and 545 ℃, respectively which indicated that reduction reaction occurs around 500 ℃ and above. SEM analysis showed that increasing of Nb loading resulted in some agglomeration and thus lowering the ability of metal oxide to gain and release oxygen. The redox characteristics were carried out using TGA with 5% CH4/N2 was used as the reducing gas, while air was used as oxidizing gas. The highest oxygen transfer capacity was 3.0% which is presented by 5 wt.% of Nb loading. Since the addition of Nb successfully improved the oxygen transport capacity, it can be concluded that Nb is the potential candidate for oxygen carrier in CLC.


2015 ◽  
Vol 3 (8) ◽  
pp. 856-865 ◽  
Author(s):  
Pallavi Mungse ◽  
Govindachetty Saravanan ◽  
Sadhana Rayalu ◽  
Nitin Labhsetwar

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1047
Author(s):  
Ewelina Ksepko ◽  
Rafal Lysowski

The objective of the research was to prepare Fe-based materials for use as oxygen carriers (OCs) and investigate their reactivity in terms of their applicability to energy systems. The performance of ZrO2 supported Fe-Mn oxide oxygen carriers with hydrogen/air in an innovative combustion technology known as chemical looping combustion (CLC) was analyzed. The influence of manganese addition (15–30 wt.%) on reactivity and other physical properties of oxygen carriers was discussed. Thermogravimetric analyses (TGA) were conducted to evaluate their performance. Multi-cycle tests were conducted in TGA with oxygen carriers utilizing gaseous fuel. The effect of redox cycle number and temperature on stability and oxygen transport capacity and redox reaction rate were also evaluated. Physical-chemical analysis such as phase composition was investigated by XRD, while morphology by SEM-EDS and surface area analyses were investigated by the BET method. For screening purposes, the reduction and oxidation were carried out from 800 °C to 1000 °C. Three-cycle TGA tests at the selected temperature range indicated that all novel oxygen carriers exhibited stable chemical looping combustion performance, apart from the reference material, i.e., Fe/Zr oxide. A stable reactivity of bimetallic OCs, together with complete H2 combustion without signs of FeMn/Zr oxide agglomeration, were proved. Oxidation reaction was significantly faster than the reduction reaction for all oxygen carriers. Furthermore, the obtained data indicated that the materials have a low cost of production, with superior reactivity towards hydrogen and air, making them perfect matching carriers for industrial applications for power generation.


2012 ◽  
Vol 550-553 ◽  
pp. 974-978
Author(s):  
Wen Yan Li ◽  
Xing Lei Liu ◽  
Qiu Luan Chen ◽  
Feng Ming Chu

Chemical-looping combustion (CLC) is a novel technology, which has inherent property of separating the greenhouse gas CO2, which uses oxygen carriers to transfer oxygen for combustion from air to fuel. The reactivity of Fe2O3/Al2O3 oxygen carrier was assessed by measuring their ability to oxidize CO. The kinetics and mechanism of oxygen carrier have been studied by TG and DTG techniques. The kinetic mechanism function of the reaction between Fe2O3/Al2O3 and CO has been built using the Coats-Redfern equation.


2013 ◽  
Vol 724-725 ◽  
pp. 1145-1149 ◽  
Author(s):  
Zi Song Liu ◽  
Yong Gang Wei ◽  
Kong Zhai Li ◽  
Hua Wang ◽  
Xing Zhu ◽  
...  

60wt%Fe2O3/Al2O3oxygen carriers were prepared by different methods and characterized by means of XRD, H2-TPR, infrared gas analyzer. The effects of preparation methods on the structure and activity of Fe2O3/Al2O3oxygen carriers for chemical looping combustion of methane were also investigated. The factors on the selectivity of CO2in the chemical looping combustion process at different reaction temperatures were discussed. Methane can be quickly converted to CO2and H2O with high selectivity at 850°C for 15 min. After redox cycling in alternant methane/air atmosphere for 30 times, the formation of CO2was enhanced, indicating higher activity of oxygen carrier after the redox experiment.


Author(s):  
Sebastien Roux ◽  
Ammar Bensakhria ◽  
Gerard Antonini

A new combustion process called chemical-looping combustion, has been suggested as an energetically efficient method for separation and capture of the carbon dioxide, generated by the combustion of fossil's fuels. This process consists of a reversible combustion, based on successive fuel oxidation via the reduction of metallic oxide followed by its regeneration by air oxidation. The generated products are: the reduced oxygen carrier, which is regenerated in a second reactor by air and recycled, and a flue gas, mainly composed of CO2 and H2O, which could be separated by condensation.In chemical-looping combustion process, it is important that the metallic oxide, used as an oxygen carrier, has a high reactivity with the fuel and good regeneration ability. It should have also good mechanical characteristics, in order to avoid its attrition and agglomeration during the successive cyclic reactions.In this work, the reactivity study of various oxygen carriers was carried out, during ten successive oxidation and reduction cycles, using a thermal gravimetrical analysis apparatus. From the results obtained, two types of oxygen carriers were identified: very reactive oxygen carriers, with a decreasing of their reactivity during the successive cycles of reduction and oxidation, and oxygen carriers with low and constant reactivity during the successive cycles.In order to improve the capacity of regeneration of the reactive oxygen carrier, several mixtures were prepared by adding stable and non-reactive metallic oxide, which acts as binder or doping agent by the mechanical properties of the mixed oxygen carrier improvement.The results obtained showed that, for all mixtures prepared and tested, the addition of binders to the reactive metallic oxides improve their regeneration ability. The best results, concerning the reactivity and the regeneration performances, were obtained with Fe2O3 mixed with CaO, TiO2 or MgO, followed by NiO mixed with CaO or TiO2 and finally CuO mixed with TiO2 or MgO.


Fuel ◽  
2020 ◽  
Vol 273 ◽  
pp. 117746
Author(s):  
Sonia Hammache ◽  
Nicholas Means ◽  
Ward Burgess ◽  
Bret Howard ◽  
Mark Smith

Sign in / Sign up

Export Citation Format

Share Document