scholarly journals Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders

2018 ◽  
Vol 8 (12) ◽  
pp. 2529 ◽  
Author(s):  
Xiaoqing Wang ◽  
Xiangjun Wang

When large-scale annotated data are not available for certain image classification tasks, training a deep convolutional neural network model becomes challenging. Some recent domain adaptation methods try to solve this problem using generative adversarial networks and have achieved promising results. However, these methods are based on a shared latent space assumption and they do not consider the situation when shared high level representations in different domains do not exist or are not ideal as they assumed. To overcome this limitation, we propose a neural network structure called coupled generative adversarial autoencoders (CGAA) that allows a pair of generators to learn the high-level differences between two domains by sharing only part of the high-level layers. Additionally, by introducing a class consistent loss calculated by a stand-alone classifier into the generator optimization, our model is able to generate class invariant style-transferred images suitable for classification tasks in domain adaptation. We apply CGAA to several domain transferred image classification scenarios including several benchmark datasets. Experiment results have shown that our method can achieve state-of-the-art classification results.

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 479 ◽  
Author(s):  
Yadong Yang ◽  
Xiaofeng Wang ◽  
Hengzheng Zhang

Compared with ordinary image classification tasks, fine-grained image classification is closer to real-life scenes. Its key point is how to find the local areas with sufficient discrimination and perform effective feature learning. Based on a bilinear convolutional neural network (B-CNN), this paper designs a local importance representation convolutional neural network (LIR-CNN) model, which can be divided into three parts. Firstly, the super-pixel segmentation convolution method is used for the input layer of the model. It allows the model to receive images of different sizes and fully considers the complex geometric deformation of the images. Then, we replaced the standard convolution of B-CNN with the proposed local importance representation convolution. It can score each local area of the image using learning to distinguish their importance. Finally, channelwise convolution is proposed and it plays an important role in balancing lightweight network and classification accuracy. Experimental results on the benchmark datasets (e.g., CUB-200-2011, FGVC-Aircraft, and Stanford Cars) showed that the LIR-CNN model had good performance in fine-grained image classification tasks.


2019 ◽  
Vol 8 (2) ◽  
pp. 4505-4507

Deep learning algorithms, in particular Convolutional Neural Networks have made notable accomplishments in many large-scale image classification tasks in the past decade. In this paper, image classification is performed using Supervised Convolutional Neural Network (SCNN). In supervised learning model, algorithm learns on a labeled dataset. SCNN architecture is built with 15 layers viz, input layer, 9 middle layers and 5 final layers. Two datasets of different sizes are tested on SCNN framework on single CPU. With CIFAR10 dataset of 60000 images the network yielded an accuracy of 73% taking high processing time, while for 3000 images taken from MIO-TCD dataset resulted 96% accuracy with less computational time


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qiang Cai ◽  
Fenghai Li ◽  
Yifan Chen ◽  
Haisheng Li ◽  
Jian Cao ◽  
...  

Along with the strong representation of the convolutional neural network (CNN), image classification tasks have achieved considerable progress. However, majority of works focus on designing complicated and redundant architectures for extracting informative features to improve classification performance. In this study, we concentrate on rectifying the incomplete outputs of CNN. To be concrete, we propose an innovative image classification method based on Label Rectification Learning (LRL) through kernel extreme learning machine (KELM). It mainly consists of two steps: (1) preclassification, extracting incomplete labels through a pretrained CNN, and (2) label rectification, rectifying the generated incomplete labels by the KELM to obtain the rectified labels. Experiments conducted on publicly available datasets demonstrate the effectiveness of our method. Notably, our method is extensible which can be easily integrated with off-the-shelf networks for improving performance.


2018 ◽  
Vol 8 (12) ◽  
pp. 2367 ◽  
Author(s):  
Hongling Luo ◽  
Jun Sang ◽  
Weiqun Wu ◽  
Hong Xiang ◽  
Zhili Xiang ◽  
...  

In recent years, the trampling events due to overcrowding have occurred frequently, which leads to the demand for crowd counting under a high-density environment. At present, there are few studies on monitoring crowds in a large-scale crowded environment, while there exists technology drawbacks and a lack of mature systems. Aiming to solve the crowd counting problem with high-density under complex environments, a feature fusion-based deep convolutional neural network method FF-CNN (Feature Fusion of Convolutional Neural Network) was proposed in this paper. The proposed FF-CNN mapped the crowd image to its crowd density map, and then obtained the head count by integration. The geometry adaptive kernels were adopted to generate high-quality density maps which were used as ground truths for network training. The deconvolution technique was used to achieve the fusion of high-level and low-level features to get richer features, and two loss functions, i.e., density map loss and absolute count loss, were used for joint optimization. In order to increase the sample diversity, the original images were cropped with a random cropping method for each iteration. The experimental results of FF-CNN on the ShanghaiTech public dataset showed that the fusion of low-level and high-level features can extract richer features to improve the precision of density map estimation, and further improve the accuracy of crowd counting.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1594
Author(s):  
Haifeng Li ◽  
Xin Dou ◽  
Chao Tao ◽  
Zhixiang Wu ◽  
Jie Chen ◽  
...  

Image classification is a fundamental task in remote sensing image processing. In recent years, deep convolutional neural networks (DCNNs) have experienced significant breakthroughs in natural image recognition. The remote sensing field, however, is still lacking a large-scale benchmark similar to ImageNet. In this paper, we propose a remote sensing image classification benchmark (RSI-CB) based on massive, scalable, and diverse crowdsourced data. Using crowdsourced data, such as Open Street Map (OSM) data, ground objects in remote sensing images can be annotated effectively using points of interest, vector data from OSM, or other crowdsourced data. These annotated images can, then, be used in remote sensing image classification tasks. Based on this method, we construct a worldwide large-scale benchmark for remote sensing image classification. This benchmark has large-scale geographical distribution and large total image number. It contains six categories with 35 sub-classes of more than 24,000 images of size 256 × 256 pixels. This classification system of ground objects is defined according to the national standard of land-use classification in China and is inspired by the hierarchy mechanism of ImageNet. Finally, we conduct numerous experiments to compare RSI-CB with the SAT-4, SAT-6, and UC-Merced data sets. The experiments show that RSI-CB is more suitable as a benchmark for remote sensing image classification tasks than other benchmarks in the big data era and has many potential applications.


2008 ◽  
Vol 18 (03) ◽  
pp. 195-205 ◽  
Author(s):  
WEIBAO ZOU ◽  
ZHERU CHI ◽  
KING CHUEN LO

Image classification is a challenging problem in organizing a large image database. However, an effective method for such an objective is still under investigation. A method based on wavelet analysis to extract features for image classification is presented in this paper. After an image is decomposed by wavelet, the statistics of its features can be obtained by the distribution of histograms of wavelet coefficients, which are respectively projected onto two orthogonal axes, i.e., x and y directions. Therefore, the nodes of tree representation of images can be represented by the distribution. The high level features are described in low dimensional space including 16 attributes so that the computational complexity is significantly decreased. 2800 images derived from seven categories are used in experiments. Half of the images were used for training neural network and the other images used for testing. The features extracted by wavelet analysis and the conventional features are used in the experiments to prove the efficacy of the proposed method. The classification rate on the training data set with wavelet analysis is up to 91%, and the classification rate on the testing data set reaches 89%. Experimental results show that our proposed approach for image classification is more effective.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Qi Zhao ◽  
Shuchang Lyu ◽  
Boxue Zhang ◽  
Wenquan Feng

Convolutional neural networks (CNNs) are becoming more and more popular today. CNNs now have become a popular feature extractor applying to image processing, big data processing, fog computing, etc. CNNs usually consist of several basic units like convolutional unit, pooling unit, activation unit, and so on. In CNNs, conventional pooling methods refer to 2×2 max-pooling and average-pooling, which are applied after the convolutional or ReLU layers. In this paper, we propose a Multiactivation Pooling (MAP) Method to make the CNNs more accurate on classification tasks without increasing depth and trainable parameters. We add more convolutional layers before one pooling layer and expand the pooling region to 4×4, 8×8, 16×16, and even larger. When doing large-scale subsampling, we pick top-k activation, sum up them, and constrain them by a hyperparameter σ. We pick VGG, ALL-CNN, and DenseNets as our baseline models and evaluate our proposed MAP method on benchmark datasets: CIFAR-10, CIFAR-100, SVHN, and ImageNet. The classification results are competitive.


2011 ◽  
Vol 271-273 ◽  
pp. 441-447
Author(s):  
Xiao Mei Chen ◽  
Dang Gang ◽  
Tian Yang

The algorithm of anomaly detection for large scale networks is a key way to promptly detect the abnormal traffic flows. In this paper, priori triggered BP neural network algorithm(PBP) is analyzed for the purpose of dealing with the problems caused by typical algorithms that are not able to adapt and learn; detect with high precision; provide high level of correctness. PBP uses K-Means and PCA to trigger self-adapting and learning ability, and also, it uses historical neuron parameter to initialize the neural network, so that it use the trained network to detect the abnormal traffic flows. According to experiments, PBP can obtain a higher level of correctness of detection than priori algorithm, and it can adapt itself according to different network environments.


Sign in / Sign up

Export Citation Format

Share Document