scholarly journals Experimental Investigation on the Deformability, Ultrasonic Wave Propagation, and Acoustic Emission of Rock Salt Under Triaxial Compression

2019 ◽  
Vol 9 (4) ◽  
pp. 635 ◽  
Author(s):  
Haoran Li ◽  
Zhikai Dong ◽  
Zuolin Ouyang ◽  
Bo Liu ◽  
Wei Yuan ◽  
...  

Ultrasonic waves, which constitute an active testing method, and acoustic emissions (AE), which can be applied as passive testing technology, can reveal rock damage processes in different ways. However, few studies so far have simultaneously adopted both, owing to the limitations of the experimental apparatus. However, the simultaneous use of both methods can improve the experimental efficiency and help to understand the rock damage evolution more comprehensively. In this study, concurrent experiments of ultrasonic waves and AE activities were carried out on rock salt under uniaxial compression, and the deformation characteristics were measured. The fracture process was divided into four stages with individual characteristics: the elastic compression stage, brittle-ductile transition with crack initiation, brittle-ductile transition with damage initiation, and plastic deformation and strain hardening stage. The ultrasonic wave velocity, crack density, ultrasonic wave amplitude, and attenuation coefficient were obtained to evaluate the damage process. The ultrasonic wave amplitude and the attenuation coefficient were recommended as forecast indicators, owing to their sensitivity and operability of measurement. The confining pressure had an inhibitory effect on crack expansion and on the AE activity, and the damage ultimate stress was defined and determined according to the AE activity and energy release characteristics. Four critical strengths of the crack initiation threshold stress, dilatancy boundary stress, short-term strength, and damage ultimate stress of rock salt were determined and then discussed. These results are valuable in evaluating rock damage and guiding the operation of underground salt caverns.

2021 ◽  
Vol 11 (12) ◽  
pp. 5720
Author(s):  
Saeid Taghizadeh ◽  
Robert Sean Dwyer-Joyce

When two rough surfaces are loaded together contact occurs at asperity peaks. An interface of solid contact regions and air gaps is formed that is less stiff than the bulk material. The stiffness of a structure thus depends on the interface conditions; this is particularly critical when high stiffness is required, for example in precision systems such as machine tool spindles. The rough surface interface can be modelled as a distributed spring. For small deformation, the spring can be assumed to be linear; whilst for large deformations the spring gets stiffer as the amount of solid contact increases. One method to measure the spring stiffness, both the linear and nonlinear aspect, is by the reflection of ultrasound. An ultrasonic wave causes a perturbation of the contact and the reflection depends on the stiffness of the interface. In most conventional applications, the ultrasonic wave is low power, deformation is small and entirely elastic, and the linear stiffness is measured. However, if a high-powered ultrasonic wave is used, this changes the geometry of the contact and induces nonlinear response. In previous studies through transmission methods were used to measure the nonlinear interfacial stiffness. This approach is inconvenient for the study of machine elements where only one side of the interface is accessible. In this study a reflection method is undertaken, and the results are compared to existing experimental work with through transmission. The variation of both linear and nonlinear interfacial stiffnesses was measured as the nominal contact pressure was increased. In both cases interfacial stiffness was expressed as nonlinear differential equations and solved to deduce the contact pressure-relative surface approach relationships. The relationships derived from linear and nonlinear measurements were similar, indicating the validity of the presented methods.


2014 ◽  
Vol 894 ◽  
pp. 45-49 ◽  
Author(s):  
Luisa Pani ◽  
Lorena Francesconi

In this paper an experimental program has been carried out in order to compare compressive strength fcand elastic static modulus Ecof recycled concrete with ultrasonic waves velocity Vp, to establish the possibility of employing nondestructive ultrasonic tests to qualify recycled concrete. 9 mix of concrete with different substitution percentage of recycled aggregates instead of natural ones and 27 cylindrical samples have been made. At first ultrasonic tests have been carried out on cylindrical samples, later elastic static modulus Ecand compressive strength fchave been experimentally evaluated. The dynamic elastic modulus Edhas been determined in function of ultrasonic wave velocity Vp; furthermore the correlations among Ed, Ec, fce Vphave been determined. It has been demonstrated that ultrasonic tests are suitable for evaluating different deformative and resisting concrete performances even when variations are small.


1975 ◽  
Vol 58 (2) ◽  
pp. 471-474 ◽  
Author(s):  
Kenneth Lazara ◽  
Jose M. Zayas ◽  
Alfred Zajac
Keyword(s):  

2018 ◽  
Vol 10 (9) ◽  
pp. 3005
Author(s):  
Ling-feng Xie ◽  
Shu-liang Zou ◽  
Xiang-yang Li ◽  
Chang-shou Hong ◽  
Hong Wang ◽  
...  

Radon is internationally recognized as one of the seven seismic precursors. A self-assembly ultrasonic generator and experimental apparatus for radon measurement were utilized to explore the radon exhalation regularities of water-bearing porous media under different ultrasonic intensities. The experimental results showed that there was a coupling relationship among radon exhalation rate, moisture content, and ultrasonic frequency. With the increase of the frequency of the ultrasonic wave, its effect on the promotion of radon exhalation rate was found to be a more obviously positive linear correlation. The radon exhalation rate, which could climb to a maximum value of 0.179 Bq·m−2·s−1 in a naturally air-dried sample, increased at first and then decreased along with increased moisture content. Moreover, this study found that the ultrasonic wave had the most remarkable promoting effects on the radon exhalation rate of porous media with high moisture content, and there is a positive linear correlation between the growth rate of the radon exhalation rate and moisture content. The experimental results could provide a beneficial reference for the continual monitoring of radon in a seismically active belt and an explanation of radon anomalies; however, the proposed experimental model was simplified, so further insights are strictly required for a reliable correlation with the real monitoring of radon in a seismically active belt.


2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. MR153-MR171 ◽  
Author(s):  
Linsen Zhan ◽  
Jun Matsushima

The nonintuitive observation of the simultaneous high velocity and high attenuation of ultrasonic waves near the freezing point of brine was previously measured in partially frozen systems. However, previous studies could not fully elucidate the attenuation variation of ultrasonic wave propagation in a partially frozen system. We have investigated the potential attenuation mechanisms responsible for previously obtained laboratory results by modeling ultrasonic wave transmission in two different partially frozen systems: partially frozen brine (two phases composed of ice and unfrozen brine) and unconsolidated sand (three phases composed of ice, unfrozen brine, and sand). We adopted two different rock-physics models: an effective medium model for partially frozen brine and a three-phase extension of the Biot model for partially frozen unconsolidated sand. For partially frozen brine, our rock-physics study indicated that squirt flow caused by unfrozen brine inclusions in porous ice could be responsible for high P-wave attenuation around the freezing point. Decreasing P-wave attenuation below the freezing point can be explained by the gradual decrease of squirt flow due to the gradual depletion of unfrozen brine. For partially frozen unconsolidated sand, our rock-physics study implied that squirt flow between ice grains is a dominant factor for P-wave attenuation around the freezing point. With decreasing temperature lower than the freezing point, the friction between ice and sand grains becomes more dominant for P-wave attenuation because the decreasing amount of unfrozen brine reduces squirt flow between ice grains, whereas the generation of ice increases the friction. The increasing friction between ice and sand grains caused by ice formation is possibly responsible for increasing the S-wave attenuation at decreasing temperatures. Then, further generation of ice with further cooling reduces the elastic contrast between ice and sand grains, hindering their relative motion; thus, reducing the P- and S-wave attenuation.


2007 ◽  
Vol 353-358 ◽  
pp. 2415-2418
Author(s):  
Jin Kyung Lee ◽  
Sang Ll Lee ◽  
Joon Hyun Lee

A study on corrosion evaluation by using ultrasonic waves and acoustic emission technique is presented. The experimental equipment was established to improve the corrosion process of carbon steel pipe. The carbon steel pipe was under 473K temperatures and 10Mpa pressure conditions, and ultrasonic wave and acoustic emission techniques were used to inspect the degree of corrosion after a certain period of time. Ultrasonic bulk waves are limited by the poor time resolution when used in the measurement of corrosion depth in thin wall structures because the corroded surfaces cause unclear echo signal edges. Therefore, in this study, the ultrasonic guided waves were generated on the pipe because the thickness of pipe was thin. Various wave modes were subsequently generated on the pipe to evaluate the implications of corrosion thinning on group velocity, transmission and reflection amplitudes. The amplitudes of the transmitted and the reflected waves are influenced by couplent material. In order to reduce the effect of coupling acoustic emission sensor was used. Acoustic emission technique has lots of parameters to evaluate the corrosion besides amplitude parameter. Among parameters energy, count, and frequency were useful parameters to measure the degree of corrosion inside the carbon steel pipe under 473K temperatures.


Sign in / Sign up

Export Citation Format

Share Document