scholarly journals A Novel CAD Tool for Electric Educational Diagrams

2019 ◽  
Vol 9 (4) ◽  
pp. 810
Author(s):  
Patricia Ruiz ◽  
Bernabé Dorronsoro

Computer-aided design (CAD) is a technological revolution, very powerful and with large applicability to problem solving. It is essential in many different disciplines ranging from architecture to education, medicine, physics, or gaming. In this work, we propose a novel CAD tool, called CADDi, to assist in the design of electric diagrams in the educational context. We are applying the theory of formal languages to create WDLang, an easy-to-use, highly expressive, unequivocal, and correct programming language for designing electric circuits. This programming language is the cornerstone of CADDi, which automatically generates the equivalent ladder diagram (explains the circuit operation) to the programmed circuit, offering additional features that allow analysis of its functionality in an interactive way. It also offers a graphical interface to directly design ladder diagrams, or to modify the automatically generated ones. The existing electrical CAD tools are either very simple, e.g., for creating good-looking diagrams with no functionality, or too complex, for professional systems design. CADDi is extremely useful for learning purposes. It assists users on how to generate ladder diagrams, and on understanding the behavior of electrical circuits. Additionally, it serves as an assessment tool for self-evaluation in the translation from wiring diagrams to ladder ones. In order to make CADDi highly accessible, it was implemented as a web page.

2018 ◽  
pp. 618-653
Author(s):  
Sara Eloy ◽  
Miguel Sales Dias ◽  
Pedro Faria Lopes ◽  
Elisângela Vilar

This chapter focuses on the development and adoption of new Multimedia, Computer Aided Design, and other ICT technologies for both Architecture and Computer Science curricula and highlights the multidisciplinary work that can be accomplished when these two areas work together. The authors describe in detail the addressed educational skills and the related developed research and highlight the contributions towards the improvements of teaching and learning in those areas. This chapter discusses the role of digital technologies, such as Virtual Reality, Augmented Reality, Multimedia, 3D Modelling software systems, Design Processes and its evaluation tools, such as Shape Grammar and Space Syntax, within the Architecture curricula.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6212
Author(s):  
Mohammed A. Alanezi ◽  
Houssem R. E. H. Bouchekara ◽  
Muhammad S. Javaid

Internet of Things (IoT) is characterized by a system of interconnected devices capable of communicating with each other to carry out specific useful tasks. The connection between these devices is ensured by routers distributed in a network. Optimizing the placement of these routers in a distributed wireless sensor network (WSN) in a smart building is a tedious task. Computer-Aided Design (CAD) programs and software can simplify this task since they provide a robust and efficient tool. At the same time, experienced engineers from different backgrounds must play a prominent role in the abovementioned task. Therefore, specialized companies rely on both; a useful CAD tool along with the experience and the flair of a sound expert/engineer to optimally place routers in a WSN. This paper aims to develop a new approach based on the interaction between an efficient CAD tool and an experienced engineer for the optimal placement of routers in smart buildings for IoT applications. The approach follows a step-by-step procedure to weave an optimal network infrastructure, having both automatic and designer-intervention modes. Several case studies have been investigated, and the obtained results show that the developed approach produces a synthesized network with full coverage and a reduced number of routers.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (6) ◽  
pp. 35-38 ◽  
Author(s):  
Dirk Denoyelle

The Interuniversity Microelectronics Center, Leuven, Belgium (IMEC) is one of the world's largest independent research centers for microelectronics. It was established in 1984 by the Flemish government as a part of a comprehensive program to promote high technology in Flanders, Belgium. Benefiting from existing experience available mainly at the University of Leuven, IMEC moved into its present facilities in 1986 (Figure 1).The Center covers a wide range of research topics in the microelectronics domain—VLSI systems design methodologies, advanced semiconductor processing, materials, packaging, and more.About 50 people work on computer-aided design, developing a series of “true” silicon compilers: CATHEDRAL. With this software, ASIC (application specific integrated circuit) design becomes extremely attractive, since CATHEDRAL covers design from the high system level down to layout.INVOMEC, the training division of IMEC, supports universities in ASIC design. It trains people for both educational institutes and industry in chip design, makes available the necessary software, and has a well-established Multi Project Chip—Multi Project Wafer service.The Processing Technologies and Materials Divisions involve about 200 people and have a 3,600 m2 clean room at their disposal. The clean room consists of a 20% class 10 area with a fast-turnaround prototyping line and an 80% class 1000 area.IMEC's objectives are: to perform research in the microelectronics field, supporting both industry and universities, and to stimulate the microelectronics industry in Flanders.IMEC performs research on both silicon and III-V technologies.


Author(s):  
Christian Noon ◽  
Brandon Newendorp ◽  
Ruqin Zhang ◽  
Eliot Winer ◽  
Jim Oliver ◽  
...  

Conceptual design involves generating hundreds to thousands of concepts and combining the best of all the concepts into a single idea to move forward into detailed design. With the current tools available, design teams usually model a small number of concepts and analyze them using traditional Computer-Aided Design (CAD) analysis tools. The creation and validation of concepts using CAD packages is extremely time consuming and unfortunately, not all concepts can be evaluated. Thus, promising concepts can be eliminated based on insufficient time and resources to use the tools available. Additionally, these virtual models and analyses are usually of much higher fidelity than what is needed at such an early stage of design. To address these issues, an desktop and immersive virtual reality (VR) framework, the Advanced Systems Design Suite (ASDS), was created to foster rapid geometry creation and concept assessment using a unique creation approach which does not require precise mating and dimensioning constraints during the geometry creation phase. The ASDS system removes these precision constraints by using 3D manipulation tools to build concepts and providing a custom easy-to-use measurement system when precise measurements are required. In this paper, the ASDS framework along with a unique and intuitive measurement system are presented for large vehicle conceptual design.


Author(s):  
Scott Angster ◽  
Kevin Lyons ◽  
Peter Hart ◽  
Sankar Jayaram

Abstract The emergence of high performance computing has opened up new avenues for the design and analysis community. Integrated Product/Process Design techniques are allowing multi-functional teams to simultaneously optimize the design of a product. These techniques can be inhibited, however, due to software integration and data exchange issues. The work outlined in this paper focuses on these issues as they relate to the design and analysis of electro-mechanical assemblies. The first effort of this work is the creation of an open environment, called the Open Assembly Design Environment. The goal of this environment is to integrate the otherwise disparate assembly design tools using a central control system and a common set of data. These design tools include virtual reality based design systems, computer-aided design systems, design for assembly systems and process planning systems. This paper outlines the overall goals of the project, presents the architecture designed for the system, describes the interfaces developed to integrate the systems, and discusses the data representation requirements for a system integrating a virtual reality system with computer-aided design systems.


Author(s):  
Sara Eloy ◽  
Miguel Sales Dias ◽  
Pedro Faria Lopes ◽  
Elisângela Vilar

This chapter focuses on the development and adoption of new Multimedia, Computer Aided Design, and other ICT technologies for both Architecture and Computer Science curricula and highlights the multidisciplinary work that can be accomplished when these two areas work together. The authors describe in detail the addressed educational skills and the related developed research and highlight the contributions towards the improvements of teaching and learning in those areas. This chapter discusses the role of digital technologies, such as Virtual Reality, Augmented Reality, Multimedia, 3D Modelling software systems, Design Processes and its evaluation tools, such as Shape Grammar and Space Syntax, within the Architecture curricula.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
D C Lo ◽  
D T Su ◽  
J T Lin

This study establishes a relationship diagram of the ship-wave interaction under a ship advancing in waves. A finite difference method based on volume of fluid (VOF) principles was used to simulate the hydrodynamic motions of a ship advancing in waves. A ship model was constructed using a computer aided design (CAD) tool. The computational fluid dynamic (CFD) technique was used to calculate the hydrodynamic motions effect of a ship sailing in waves at varying angles of incidence. This study investigates a number of significant related parameters, such as the speed of the ship model, the various wave incidence angles, the wave height, and the navigation time. A chart is also used to show the flow field, and changes in the six degrees of freedom motion and continually compare changes in the drag force.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Emilie Poirson ◽  
Jean-François Petiot ◽  
Ludivine Boivin ◽  
David Blumenthal

To avoid failures in the marketplace, the control of the risks in product innovation and the reduction of the innovation cycles require fast and valid assessments from customers. An interactive genetic algorithm (IGA) is proposed for eliciting users' perceptions about the shape of a product, in order to stimulate creativity and to identify design trends. Interactive users' assessment tests are conducted on virtual products to capture and analyze users' responses. The IGA is interfaced with Computer Aided Design (CAD) software (CATIA V5) to create sets of parameterized designs in real time, which are presented iteratively by a graphical interface to the users for evaluation. After a description of the IGA, a study on the convergence of the IGA is presented. The convergence varies, according to the tuning parameters of the algorithm and the size of the design problem. An experiment was carried out with a set of 45 users on the application case, a dashboard, put forward by Renault. The implementation of the perceptive tests and the analysis of the results are described using hierarchical ascendant classification (HAC) and multivariate analysis. This paper shows how the results of tests using IGA can be used to elicit user perception and to detect design trends.


Sign in / Sign up

Export Citation Format

Share Document