Up Close: The Interuniversity Microelectronics Center (IMEC), Leuven, Belgium

MRS Bulletin ◽  
1989 ◽  
Vol 14 (6) ◽  
pp. 35-38 ◽  
Author(s):  
Dirk Denoyelle

The Interuniversity Microelectronics Center, Leuven, Belgium (IMEC) is one of the world's largest independent research centers for microelectronics. It was established in 1984 by the Flemish government as a part of a comprehensive program to promote high technology in Flanders, Belgium. Benefiting from existing experience available mainly at the University of Leuven, IMEC moved into its present facilities in 1986 (Figure 1).The Center covers a wide range of research topics in the microelectronics domain—VLSI systems design methodologies, advanced semiconductor processing, materials, packaging, and more.About 50 people work on computer-aided design, developing a series of “true” silicon compilers: CATHEDRAL. With this software, ASIC (application specific integrated circuit) design becomes extremely attractive, since CATHEDRAL covers design from the high system level down to layout.INVOMEC, the training division of IMEC, supports universities in ASIC design. It trains people for both educational institutes and industry in chip design, makes available the necessary software, and has a well-established Multi Project Chip—Multi Project Wafer service.The Processing Technologies and Materials Divisions involve about 200 people and have a 3,600 m2 clean room at their disposal. The clean room consists of a 20% class 10 area with a fast-turnaround prototyping line and an 80% class 1000 area.IMEC's objectives are: to perform research in the microelectronics field, supporting both industry and universities, and to stimulate the microelectronics industry in Flanders.IMEC performs research on both silicon and III-V technologies.

2014 ◽  
Vol 571-572 ◽  
pp. 768-771
Author(s):  
Jun Liu

The 3D technology currently has in various engineering fields have a wide range of applications, all the 3D visual effects technology can bring us visual impact, the use of 3D technology produced by the television advertising more easily accepted by the audience, this paper study on the 3D computer-aided design advertising design application technology.


2018 ◽  
pp. 618-653
Author(s):  
Sara Eloy ◽  
Miguel Sales Dias ◽  
Pedro Faria Lopes ◽  
Elisângela Vilar

This chapter focuses on the development and adoption of new Multimedia, Computer Aided Design, and other ICT technologies for both Architecture and Computer Science curricula and highlights the multidisciplinary work that can be accomplished when these two areas work together. The authors describe in detail the addressed educational skills and the related developed research and highlight the contributions towards the improvements of teaching and learning in those areas. This chapter discusses the role of digital technologies, such as Virtual Reality, Augmented Reality, Multimedia, 3D Modelling software systems, Design Processes and its evaluation tools, such as Shape Grammar and Space Syntax, within the Architecture curricula.


Author(s):  
Omer Anil Turkkan ◽  
Hai-Jun Su

Flexure mechanisms are the central part of numerous precision instruments and devices that are used in a wide range of science and engineering applications and currently, design of flexure mechanisms often heavily relies on designers’ previous hands-on experience. Therefore, a design tool that will speed up the design process is needed and this paper will introduce a systematic approach for building the necessary equations that are based on screw theory and linear elastic theory to analyze flexure mechanisms. A digital library of commonly used flexure elements must be available for a design tool and therefore, we first present the compliance matrices of commonly used flexure components. Motion twists and force wrenches of the screw theory can be related with these compliance matrices. Then, we introduce an algorithm that constructs the required linear system equations from individual compliance equations. This algorithm is applicable to flexure mechanisms with serial, parallel or hybrid chains. Finally, the algorithm is tested with a flexure mechanisms and it is shown that this approach can be the core of a future design tool.


1999 ◽  
Vol 83 (608) ◽  
pp. 34-44 ◽  
Author(s):  
Mark E. Sanders

The curriculum and method of technology education remain one of the best-kept secrets in all education. Technology education engages students in a wide range of the very latest technologies: digital imaging, lasers, robotics, solar energy, World Wide Web development, magnetic levitation vehicles, analog and digital electronics, flight simulators, computer-aided design, and so forth.


1996 ◽  
Vol 74 (S1) ◽  
pp. 115-130 ◽  
Author(s):  
Arokia Nathan

Microsensors are miniaturized devices, fabricated using silicon-based and related technologies, that convert input physical and chemical signals into an output electrical signal. The key driving force in microsensor research has been the integrated circuit (IC) and micromachining technologies. The latter, in particular, is fueling tremendous activity in micro-electromechanical systems (MEMS). In terms of technology and design tools, MEMS is at a stage where microelectronics was 30 years ago and is expected to evolve at an equally rapid pace. The synergy between the IC, micromachining, and integrated photonics technologies can potentially spawn a new generation of microsystems that will feature a unique marriage of microsensor, signal-conditioning and -processing circuitry, micromechanics, and optomechanics possibly on a single chip. In this paper, the physical transduction principles, materials considerations, process-fabrication technologies, and computer-aided-design (CAD) tools will be reviewed along with pertinent examples drawn from our microsensor research activity at the Microelectronics Laboratory, University of Waterloo.


2014 ◽  
Vol 889-890 ◽  
pp. 125-129
Author(s):  
Wei Xiao

The 3D computer technology has a wide range of applications currently, with various engineering fields. All 3D visual effects can bring us visual impact, the use of 3D computer technology produced by advertising more easily accepted by the audience, this paper discuss the 3D computer-aided design advertising and its application. The paper analysis 3D advertising purposes and applications range scale, the application of technical features and style.


2013 ◽  
Vol 475-476 ◽  
pp. 1517-1521
Author(s):  
Qing Gang Yang ◽  
Meng Zhang ◽  
Chang Xiao

The three-dimensional computer technology currently has in various engineering fields have a wide range of applications, all the three-dimensional visual effects technology can bring us visual impact, the use of three-dimensional computer technology produced by the television advertising more easily accepted by the audience, this thesis in the three-dimensional computer-aided design advertising design application technology.


Sign in / Sign up

Export Citation Format

Share Document