New methods for impact assessment of biotic-resource depletion in life cycle assessment of fisheries: theory and application

2014 ◽  
Vol 73 ◽  
pp. 63-71 ◽  
Author(s):  
Juliette Langlois ◽  
Pierre Fréon ◽  
Jean-Philippe Delgenes ◽  
Jean-Philippe Steyer ◽  
Arnaud Hélias
Author(s):  
Manish Sakhlecha ◽  
Samir Bajpai ◽  
Rajesh Kumar Singh

Buildings consume major amount of energy as well as natural resources leading to negative environmental impacts like resource depletion and pollution. The current task for the construction sector is to develop an evaluation tool for rating of buildings based on their environmental impacts. There are various assessment tools and models developed by different agencies in different countries to evaluate building's effect on environment. Although these tools have been successfully used and implemented in the respective regions of their origin, the problems of application occur, especially during regional adaptation in other countries due to peculiarities associated with the specific geographic location, climatic conditions, construction methods and materials. India is a rapidly growing economy with exponential increase in housing sector. Impact assessment model for a residential building has been developed based on life cycle assessment (LCA) framework. The life cycle impact assessment score was obtained for a sample house considering fifteen combinations of materials paired with 100% thermal electricity and 70%-30% thermal-solar combination, applying normalization and weighting to the LCA results. The LCA score of portland slag cement with burnt clay red brick and 70%-30% thermal-solar combination (PSC+TS+RB) was found to have the best score and ordinary Portland cement with flyash brick and 100% thermal power (OPC+T+FAB) had the worst score, showing the scope for further improvement in LCA model to include positive scores for substitution of natural resources with industrial waste otherwise polluting the environment.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3820
Author(s):  
Mélanie Douziech ◽  
Lorenzo Tosti ◽  
Nicola Ferrara ◽  
Maria Laura Parisi ◽  
Paula Pérez-López ◽  
...  

Heat production from a geothermal energy source is gaining increasing attention due to its potential contribution to the decarbonization of the European energy sector. Obtaining representative results of the environmental performances of geothermal systems and comparing them with other renewables is of utmost importance in order to ensure an effective energy transition as targeted by Europe. This work presents the outputs of a Life Cycle Assessment (LCA) performed on the Rittershoffen geothermal heat plant applying guidelines that were developed within the H2020 GEOENVI project. The production of 1 kWhth from the Rittershoffen heat plant was compared to the heat produced from natural gas in Europe. Geothermal heat production performed better than the average heat production in climate change and resource use, fossil categories. The LCA identified the electricity consumption during the operation and maintenance phase as a hot spot for several impact categories. A prospective scenario analysis was therefore performed to assess the evolution of the environmental performances of the Rittershoffen heat plant associated with the future French electricity mixes. The increase of renewable energy shares in the future French electricity mix caused the impact on specific categories (e.g., land use and mineral and metals resource depletion) to grow over the years. However, an overall reduction of the environmental impacts of the Rittershoffen heat plant was observed.


2019 ◽  
Vol 8 (4) ◽  
pp. 304 ◽  
Author(s):  
Björn Koch ◽  
Fernando Peñaherrera ◽  
Alexandra Pehlken

Including criticality into Life Cycle Assessment (LCA) has always been challenging to achieve but desirable to accomplish. In this article, we present a new approach for the evaluation of resource consumption of products by building comparison values based on Life Cycle Impact Assessment (LCIA) combined with weighted criticality values to show the direct impacts of criticality on LCA results. For this purpose, we develop an impact indicator based on the Abiotic Depletion Potential (ADP) of natural resources and use the two main parameters defined by the EU to determine the criticality of a material - the economic importance and the supply risk – in our case studies to build the Criticality Weighted Abiotic Depletion Potentials (CWADPs), one for each parameter. These indicators allow identifying and measuring the impacts of criticality when comparing the results of resource depletion using the ADP methodology and the results that incorporate criticality. The comparison of the CWADPs to the corresponding EU criticality values and its thresholds it reflects the equivalent criticality of the assessed product. This information reflects the impacts of criticality on LCA and assesses the total resource consumption of critical materials in a system.Keywords: Life Cycle Assessment, criticality, resources, materials, sustainability indicator


OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


Author(s):  
Titi Tiara Anasstasia ◽  
Muhammad Mufti Azis

Life Cycle Assessment (LCA) adalah salah satu cara yang dapat digunakan untuk mengevaluasi sistem pengelolaan sampah berdasarkan nilai potensi dampak yang dihasilkan. Bank Sampah Asoka Berseri di Kabupaten Tuban merupakan salah satu contoh unit pengolah sampah yang bertujuan untuk mengurangi potensi dampak dari timbulan sampah secara kualitas maupun kuantitas di wilayah pedesaan. Tujuan studi ini adalah menghitung dan mengevaluasi potensi dampak lingkungan yang dihasilkan dari program bank sampah, kemudian dibandingkan dengan penanganan sampah konvensional yang dilakukan oleh masyarakat. Metode yang digunakan berdasarkan CML Baseline v4.4 dan 14000 standar ISO, meliputi goal and scope, life cycle inventory (LCI), life cycle impact assessment (LCIA) dan interpretasi. Simulasi LCA dilakukan dengan Software OpenLCA untuk menghitung nilai potensi dampak dari setiap kilogram sampah yang dihasilkan. Berdasarkan hasil simulasi, setiap 1 kg sampah yang dikelola oleh bank sampah menghasilkan potensi dampak pemanasan global lebih rendah (6,395 kg CO2 eq.) dibandingkan dengan penimbunan (13,057 kg CO2 eq.) dan pembakaran (10,850 kg CO2 eq.). Pengolahan sampah lebih lanjut menjadi RDF dan kompos di bank sampah berpotensi menghasilkan dampak lingkungan lebih rendah dan menambah pendapatan masyarakat.


Environments ◽  
2019 ◽  
Vol 6 (9) ◽  
pp. 105
Author(s):  
Kavya Madhu ◽  
Stefan Pauliuk

Planning urban expansion under the interconnected Sustainable Development Goals requires a systemic analysis of its environmental impacts. The benefits of integrating the widely used system analysis tool life cycle assessment (LCA) into the planning process tool environmental impact assessment (EIA) are described in the literature. However, not many applications of such an integration have been conducted. The aim of this study is to refine the framework for integrating LCA into the process of EIA and to apply this framework to an example of urban expansion: Masdar City in Abu Dhabi. The integrated framework builds on the complementarity between the scope and assessment steps of the tools and assesses the impacts for the areas of protection: human health, ecosystem, and resources. The framework is then applied to the vehicles, buildings, and infrastructure in the city’s first development phase (DP1). Major environmental stressors include the loss of existing desert ecosystem and the utilization of non-renewable sources of energy at various development stages of DP1. Substituting natural gas-based electricity with solar power could potentially save 46% of current carbon emissions. To mitigate the land transformation impacts, construction of “close-to-nature” artificial habitats, and increased use of low-carbon fuels is suggested.


Sign in / Sign up

Export Citation Format

Share Document