scholarly journals Effects of Amendments on Soil Microbial Diversity, Enzyme Activity and Nutrient Accumulation after Assisted Phytostabilization of an Extremely Acidic Metalliferous Mine Soil

2019 ◽  
Vol 9 (8) ◽  
pp. 1552 ◽  
Author(s):  
Sheng-xiang Yang ◽  
Bin Liao ◽  
Rong-bo Xiao ◽  
Jin-tian Li

Current criteria for successful phytostabilization of metalliferous mine wastelands have paid much attention to soil physico-chemical properties and vegetation characteristics. However, it remains poorly understood as to how the soil microbial community responds to phytostabilization practices. To explore the effects of amendments on the microbial community after assisted phytostabilization of an extremely acidic metalliferous mine soil (pH < 3), a pot experiment was performed in which different amendments and/or combinations including lime, nitrogen-phosphorus-potassium (NPK) compound fertilizer, phosphate fertilizer and river sediment were applied. Our results showed the following: (1) The amendments significantly increased soil microbial activity and biomass C, being 2.6–4.9 and 1.9–4.1 times higher than those in the controls, respectively. (2) The activities of dehydrogenase, cellulase and urease increased by 0.9–7.5, 2.2–6.8 and 6.7–17.9 times while acid phosphatase activity decreased by 58.6%–75.1% after the application of the amendments by comparison with the controls. (3) All the amendments enhanced the nutrient status of the mine soil, with organic matter, total nitrogen and total phosphorus increased by 5.7–7.8, 3.1–6.8 and 1.1–1.9 times, relative to the mine soil. In addition, there were strong positive correlations between soil microbial community parameters and nutrient factors, suggesting that they were likely to be synergistic. From an economic view, the combination of lime (25 t ha−1) and sediment from the Pearl River (30%) was optimal for functional rehabilitation of the microbial community in the extremely acidic metalliferous mine soil studied.

2021 ◽  
Author(s):  
Dandan Xu ◽  
Jinfeng Ling ◽  
Pinggen Xi ◽  
Yani Zeng ◽  
Jianfan Zhang ◽  
...  

Abstract Organic mulching is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulching and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulching on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulching. Our results showed that organic mulching could decrease the disease incidence in the litchi plantation. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, higher bacterial and fungal community diversity indexes were found in organic mulching soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. Thus, we believe that organic mulching has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


2021 ◽  
Vol 13 (21) ◽  
pp. 11684
Author(s):  
Li Fan ◽  
Weiping Zhao ◽  
Wendan Feng ◽  
Ping Mo ◽  
Yunlin Zhao ◽  
...  

Soil microorganisms play an important role in regulating a variety of ecological functions. In recent years, the research on ecological restoration after mining has made people more aware of the importance of microbial diversity to ecosystem restoration. The present study investigated the effect of ecological restoration on microbial community structure and its relationship with soil physicochemical properties in the Dabaoshan mining area, China. High throughput sequencing technology was used to analyze and compare the microbial community composition of three types of soil (undamaged area, unrestoration area, and ecological restoration area). The contents of organic carbon, total nitrogen, and total phosphorus were 2.38–12.97 g/kg, 0.39–1.62 g/kg, and 0.99–1.51 g/kg, respectively. In different soil states, undamaged area and ecological restoration area were significantly higher than those in unrestoration area. The results showed that the structure of soil microbial community was significantly correlated with soil physicochemical properties, and formations in the repaired and unrepaired soils were different. Operational Taxonomic Unit (OTU) cluster analysis and diversity index analysis showed that soil microbial community changed at phylum and genus levels. The results showed that at the phylum level, all soil samples contained Firmicutes, Proteobacteria, and actinobacteria. Firmicutes and Proteobacteria of the ecological restoration area (ER1, ER2) were the highest in relative abundance compared with other samples, accounting for more than 45%. Proteobacteria and Acidobacteria were the dominant phylum in the undamaged area (UD), accounting for 32.7% and 22.3%, respectively. It can be seen that soil restoration produced a new dominant population, and Proteobacteria showed an absolute competitive advantage in the mining soil.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Feiying Zhu ◽  
Jiling Xiao ◽  
Yi Zhang ◽  
Lin Wei ◽  
Zhihuai Liang

AbstractFusarium wilt disease causes severe decline of watermelon yield and quality. Researches have been reported that soil fumigation with dazomet can help control crop disease. Firstly, we discovered that the dazomet application suppressed watermelon wilt in field experiment compared to the control group. While the importance of microbial community in regulating plant health has been rising up, we therefore focused on examining the soil microbial diversity at six different sampling times after dazomet application by using Illumina MiSeq platform. Remarkably, our research results showed that some beneficial microbial genera have been altered, and these beneficial microbial genera have dominated the entire community, such as Nitrolancea, Pseudomonas and Penicillium after dazomet application. Instead, the relative abundance of Fusarium genus and the pathogen FON (Fusarium oxysporum f. sp. niveum, FON) had the decreased. As there was a significant accumulation of AP (available soil phosphorus) after dazomet application, we noticed that the beneficial microbes as Bacillus, Nitrolancea, Paenibacillus and Penicillium have significant positive correlation with AP but negatively related to morbidity. Together, these results demonstrate that the altered soil microbial community structure by dazomet application is critical to suppress watermelon Fusarium wilt. Thus, our results will drive investigations aimed to deploy interaction of microbiota contribute and plant immunity.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu Zhang ◽  
Chao Xue ◽  
Dan Fang ◽  
Xiaohui He ◽  
Mengyu Wei ◽  
...  

AbstractFusarium wilt is a devastating disease which impacts watermelon production. Soil fumigation using dazomet followed by biological organic fertilizer was applied to suppress the Fusarium wilt disease. We propose that fumigation suppresses the soil indigenous community, especially the soil-borne pathogens, while the utilization of bio-organic fertilizer facilitates the recovery of the soil microbiome to a beneficial, suppressive state through the introduction of plant growth-promoting microorganisms. Greenhouse experiment showed that applied biological organic fertilizer after dazomet fumigation effective restrain the disease incidence with a 93.6% disease control. Fumigation strongly decreased soil microbial diversity and altered relative taxa abundances, suggesting the possibility of niche release by the resident soil microbial community. Fumigation followed by bio-fertilizer transformed the soil microbial community composition and resulted in higher relative abundances of beneficial microbial groups such as Bacillus (8.5%) and Trichoderma (13.5%), coupled with lower Fusarium abundance compared to other treatments. Network analysis illustrated that soil fumigation decreased interactions within the soil microbial community with less nodes and links while bio-fertilizer addition promoted node interactions. In addition, bio-fertilizer addition after fumigation resulted in the beneficial species becoming the key network connectors. Collectively, fumigation appears to release the resident soil niche resulting in lower diversity while the beneficial microbes introduced by bio-fertilizer addition colonize these niches, leading to a more complex community with fewer pathogens that suppresses Fusarium wilt disease incidence.


2021 ◽  
Author(s):  
Yi Zhang ◽  
Ying-Zhong Xie ◽  
Hong-Bin Ma ◽  
Juan Zhang ◽  
Le Jing ◽  
...  

Abstract Background: The study evaluates how rainfall change and temperature increase affect microbial communities in the desert grassland of Ningxia Autonomous Region, China to explore the soil microbial community and the relationships among the soil microbial community, chemical properties, soil respiration (SR) and plant biomass under the climate change. We established the field experiment with five levels of rainfall by rainout shelters and two levels of temperature by Open-Top Chamber (OTC). Results: The effect of temperature to soil microbial communities is not significant, but with the continuous increase of rainfall, the microbial community gradually increases. Soil microbial diversity negatively correlated with soil CO2 flux. The α-diversity of microbial communities positively correlated with above-living biomass (ALB) and soil temperature (ST), but negatively correlated with root biomass (RB). Conclusions: Both rainfall and temperature’s rising do not promote the soil community α-diversity, but it can promote soil microbial community β-diversity. Soil microbial communities show resistance to rainfall changing. Soil respiration (SR) will limit soil microbial diversity. Soil organic carbon (SOC), soil total nitrogen (STN), and soil total phosphorus (STP) will promote soil microbial abundance and diversity. ALB and ST will promote the soil α-diversity, but the effect of RB to soil microbial is opposite. These findings maybe provide a reliable theoretical basis for formulating a reasonable response strategy in desert steppe ecosystems.


2019 ◽  
Vol 7 (12) ◽  
pp. 676 ◽  
Author(s):  
Yang Gao ◽  
Yang Lu ◽  
Weipeng Lin ◽  
Jihui Tian ◽  
Kunzheng Cai

The role of biochar amendments in enhancing plant disease resistance has been well documented, but its mechanism is not yet fully understood. In the present study, 2% biochar made from wheat straw was added to the soil of tomato infected by Ralstonia solanacearum to explore the interrelation among biochar, tomato bacterial wilt resistance, soil chemical properties, and soil microbial community and to decipher the disease suppression mechanisms from a soil microbial perspective. Biochar application significantly reduced the disease severity of bacterial wilt, increased soil total organic carbon, total nitrogen, C:N ratio, organic matter, available P, available K, pH, and electrical conductivity. Biochar treatment also increased soil acid phosphatase activity under the non-R.-solanacearum-inoculated condition. High-throughput sequencing of 16S rRNA revealed substantial differences in rhizosphere bacterial community structures between biochar-amended and nonamended treatments. Biochar did not influence soil microbial richness and diversity but significantly increased the relative abundance of Bacteroidetes and Proteobacteria in soil at the phylum level under R. solanacearum inoculation. Furthermore, biochar amendment harbored a higher abundance of Chitinophaga, Flavitalea, Adhaeribacter, Pontibacter, Pedobacter, and Ohtaekwangia at the genus level of Bacteroides and Pseudomonas at the genus level of Proteobacteria under R. solanacearum inoculation. Our findings suggest that a biochar-shifted soil bacterial community structure can favorably contribute to the resistance of tomato plants against bacterial wilt.


2021 ◽  
Author(s):  
Liuting Zhou ◽  
Jianjuan Li ◽  
Chen Zhang ◽  
Xinlai Guo ◽  
Wei Chu ◽  
...  

Abstract The aim of this study was to explore the soil microbial variability within different forest ecosystems (evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) at different altitudes in mid-subtropics of China. The phospholipid fatty acid (PLFA) method was used to analyze the microbial communities in rhizosphere soil under different forest types. The relationships were also analyzed between the microbial diversity and soil nutrients. A total of 27 PLFA biomarkers were detected and the PLFA concentrations decreased in the sequence of bacteria > fungus > actinomycete > protozoa in all forest types. The microbial communities in the soil under all forest types were distinct. The predominant microflora in all soils were 18:1ω9c, 16:1ω7c, cy19:0, a17:0 and 18:0. The indexes of Simpson, Shannon-Wiener and Brillouin of soil microbial community diversity in these four forest types all showed a trend of EBF > CF > SDF > AM. According to principal component analyses (PCA), the variable variances of principal components 1 and 2, which were related to the PLFA biomarkers of soil microorganisms, were 67.67% and 17.91%, respectively. Furthermore, the total PLFAs of different soil microbial groups showed a correlation with soil nutrients and enzyme activities in all forest types. The soil microbial diversity gradually decreased in the order of EBF > CF > SDF > AM in the Daiyun Mountains. Different vegetation types affect soil microbial community composition and diversity by changing the soil physicochemical properties and enzyme activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoya Gong ◽  
Jibo Shi ◽  
Xingang Zhou ◽  
Tao Yuan ◽  
Danmei Gao ◽  
...  

Paddy-upland rotation is an effective agricultural management practice for alleviating soil sickness. However, the effect of varying degrees of flooding on the soil microbial community and crop performance remains unclear. We conducted a pot experiment to determine the effects of two soil water content (SWC) and two flooding durations on the soil microbial community attributes and yield in cucumber. In the pot experiment, cucumber was rotated with cress single (45 days) or double (90 days) under 100 or 80% SWC. Then, the soil microbial were inoculated into sterilized soil to verified the relationship between cucumber growth and microorganisms. The results indicated single cress rotation resulted in a higher cucumber yield than double cress rotation and control. Cress rotation under 80% SWC had higher soil microbial diversity than cress rotation under 100% SWC and control. Flooding duration and SWC led to differences in the structure of soil microbial communities. Under 80% SWC, single cress rotation increased the relative abundance of potentially beneficial microorganisms, including Roseiflexus and Pseudallescheria spp., in cucumber rhizosphere. Under 100% SWC, single cress rotation increased the relative abundance of potentially beneficial bacteria, such as Haliangium spp., and decreased potential pathogenic fungi, such as Fusarium and Monographella spp., compared with double cress rotation and control. Varying degrees of flooding were causing the difference in diversity, structure and composition of soil microbial communities in the cucumber rhizosphere, which have a positive effect on cucumber growth and development.


Sign in / Sign up

Export Citation Format

Share Document