scholarly journals Numerical Investigation on Unsteady Separation Flow Control in an Axial Compressor Using Detached-Eddy Simulation

2019 ◽  
Vol 9 (16) ◽  
pp. 3298 ◽  
Author(s):  
Mingming Zhang ◽  
Anping Hou

Unsteady excitation has proved its effectiveness in separation flow control and has been extensively studied. It is observed that disordered shedding vortices in compressors can be controlled by unsteady excitation, especially when the excitation frequency coincides with the frequency of the shedding vortex. Furthermore, former experimental results indicated that unsteady excitation at other frequencies also had an impact on the structure of shedding vortices. To investigate the impact of excitation frequency on vortex shedding structure, the Detached-Eddy Simulation (DES) method was applied in the simulation of shedding vortex structure under unsteady excitations at different frequencies in an axial compressor. Effectiveness of the DES method was proved by comparison with URANS results. The simulation results showed a good agreement with the former experiment. The numerical results indicated that the separation flow can be partly controlled when the excitation frequency coincided with the unsteady flow inherent frequency. It showed an increase in stage performance under the less-studied separation flow control by excitation at a certain frequency of pressure side shedding vortex. Compared with other frequencies of shedding vortices, the frequency of pressure side shedding vortex was less sensitive to mass-flow variation. Therefore, it has potential for easier application on flow control in industrial compressors.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2123
Author(s):  
Jun Li ◽  
Jun Hu ◽  
Chenkai Zhang

In order to investigate the flow structure and unsteady behavior of three-dimensional corner separation, a delayed detached-eddy simulation (DDES) method based on the Spalart–Allmaras (SA) model is performed on the third-stage stator of a multistage low-speed axial compressor. The stator simulation is validated by experiments before flow mechanism analysis. The complicated flow fields in the stator are then described step by step. Firstly, the structure and development process of vortices in corner separation flow are analyzed. Secondly, the velocity histogram of the monitor points in the mainstream and corner separation regions is obtained, and the velocity distribution of the corner separation region is discussed. Finally, Reynolds stress, Lumley anisotropy, turbulence energy spectra, and helicity density are discussed to understand the turbulence behavior of the corner separation flow in the stator. The results show that the corner separation appears at even the design condition and different kinds of vortical structures appear in the stator hub corner. The unsteadiness of corner separation flow is mainly reflected in the separation on the suction side of the blade and the wake shedding. Turbulence anisotropy and energy backscatter are found to be dominant in the separation region, which is correlated to the high shear stress.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yangwei Liu ◽  
Luyang Zhong ◽  
Lipeng Lu

Tip leakage vortex (TLV) has a large impact on compressor performance and should be accurately predicted by computational fluid dynamics (CFD) methods. New approaches of turbulence modeling, such as delayed detached eddy simulation (DDES), have been proposed, the computational resources of which can be reduced much more than for large eddy simulation (LES). In this paper, the numerical simulations of the rotor in a low-speed large-scale axial compressor based on DDES and unsteady Reynolds-averaged Navier–Stokes (URANS) are performed, thus improving our understanding of the TLV dynamic mechanisms and discrepancy of these two methods. We compared the influence of different time steps in the URANS simulation. The widely used large time-step makes the unsteadiness extremely weak. The small time-step shows a better result close to DDES. The time-step scale is related to the URANS unsteadiness and should be carefully selected. In the time-averaged flow, the TLV in DDES dissipates faster, which has a more similar structure to the experiment. Then, the time-averaged and instantaneous results are compared to divide the TLV into three parts. URANS cannot give the loss of stability and evolution details of TLV. The fluctuation velocity spectra show that the amplitude of high frequencies becomes obvious downstream from the TLV, where it becomes unstable. Last, the anisotropy of the Reynolds stress of these two methods is analyzed through the Lumley triangle to see the distinction between the methods and obtain the Reynolds stress. The results indicate that the TLV latter part in DDES is anisotropic, while in URANS it is isotropic.


AIAA Journal ◽  
2016 ◽  
Vol 54 (8) ◽  
pp. 2377-2391 ◽  
Author(s):  
W. Riéra ◽  
J. Marty ◽  
L. Castillon ◽  
S. Deck

2020 ◽  
Author(s):  
Christian Grinderslev ◽  
Niels Nørmark Sørensen ◽  
Sergio González Horcas ◽  
Niels Troldborg ◽  
Frederik Zahle

Abstract. In order to design future large wind turbines, knowledge is needed about the impact of aero-elasticity on the rotor loads and performance, and about the physics of the atmospheric flow surrounding the turbines. The objective of the present work is to study both effects by means of high fidelity rotor-resolved numerical simulations. In particular, unsteady computational fluid dynamics (CFD) simulations of a 2.3 MW wind turbine rotor are conducted, this rotor being the largest design with relevant experimental data available to the authors. Turbulence is modeled with two different approaches. On one hand, the well established improved delayed detached eddy simulation (IDDES) model is employed. An additional set of simulations relies on a novel hybrid turbulence model, developed within the framework of the present work. It consists on the blending of a large eddy simulation (LES) model for atmospheric flow by Deardorff with an IDDES model for the separated flow near the rotor geometry. In the same way, the assessment of the influence of the blade flexibility is performed by comparing two different sets of computations. A first group accounts for a structural multi body dynamic (MBD) model of the blades. The MBD solver was coupled to the CFD solver during run time with a staggered fluid structure interaction (FSI) scheme. The second set of simulations uses the original rotor geometry, without accounting for any structural deflection. The results of the present work show no significant difference between the IDDES and the hybrid turbulence model. However, it is expected that future simulations of more complex stratification and longer domains will benefit from the developed hybrid model. In a similar manner, and due to the fact that the considered rotor was relatively stiff, the loading variation introduced by the blade flexibility was found to be negligible when compared to the influence of inflow turbulence. The simulation method validated here is considered highly relevant for future turbine designs, where the impact of blade elasticity will be significant and the detailed structure of the atmospheric inflow will be important.


Author(s):  
Purvic Patel ◽  
Yunchao Yang ◽  
Gecheng Zha

Abstract This paper utilizes the Improved Delayed Detached Eddy Simulation (IDDES) to investigate the non-synchronous vibration (NSV) mechanism of a 1.5 stage high-speed axial compressor. The NSV occurs at a part speed in the rig test. A low diffusion E-CUSP approximate Riemann solver with a third order Weighted Essentially Non-Oscillating (WENO) scheme for the inviscid flux and a second order central differencing scheme for the viscous flux are employed to solve the 3D time accurate Navier-Stokes equations. The fully conservative sliding boundary condition is used to preserve the wake-propagation. The aerodynamic instability in the tip region induces two alternating low pressure regions near the leading and the trailing edge on the suction side of the rotor blade. It is observed that the circumferential tip vortex motion in the rotor passage above 75 % span and its coupling forces cause NSV at the operating speed. This instability moves in the counter-rotating direction in the rotational frame. The NSV results using URANS simulation is also presented for comparison. The predicted frequency with the IDDES and URANS using rigid blades agrees well with the measured frequency in the rig test. In addition to the NSV, the IDDES solver also captures the dominant engine order frequencies. The tip flow structures show the vortex filament with one end on the suction side of the rotor blade and other side terminating on the casing or the pressure side of the rotor blade.


Sign in / Sign up

Export Citation Format

Share Document