scholarly journals A Lightweight Hash-Based Blockchain Architecture for Industrial IoT

2019 ◽  
Vol 9 (18) ◽  
pp. 3740 ◽  
Author(s):  
Byoungjin Seok ◽  
Jinseong Park ◽  
Jong Hyuk Park

Blockchain is a technology that can ensure data integrity in a distributed network, and it is actively applied in various fields. Recently, blockchain is gaining attention due to combining with the Internet of Things (IoT) technology in the industrial field. Moreover, many researchers have proposed the Industrial IoT (IIoT) architecture with blockchain for data integrity and efficient management. The IIoT network consists of many heterogeneous devices (e.g., sensors, actuators, and programmable logic controllers (PLC)) with resources-constrained, and the availability of the network must be preferentially considered. Therefore, applying the existed blockchain technology is still challenging. There are some results about the technique of constructing blockchain lightly to solve this challenge. However, in these results, the analysis in perspective of cryptographic performance (area, throughput, and power consumption) has not been considered sufficiently, or only focused on the architecture of the blockchain network. The blockchain technology is based on cryptographic techniques, and the main part is a cryptographic hash function. Therefore, if we construct the blockchain-based IIoT architecture, we have to consider the performance of the hash function. Many lightweight hash functions have been proposed recently for the resource-constrained environment, and it can also be used to the blockchain. Therefore, in this paper, we analyze the considerations of lightweight blockchain for IIoT. Also, we conduct an analysis of lightweight hash for blockchain, and propose a new lightweight hash-based blockchain architecture that can change the hash algorithm used for mining adjust to network traffic.

2021 ◽  
Vol 3 (2) ◽  
pp. 65-72
Author(s):  
Muhammad Rehan Anwar ◽  
Desy Apriani ◽  
Irsa Rizkita Adianita

The hash function is the most important cryptographic primitive function and is an integral part of the blockchain data structure. Hashes are often used in cryptographic protocols, information security applications such as Digital Signatures and message authentication codes (MACs). In the current development of certificate data security, there are 2 (two) types of hashes that are widely applied, namely, MD and SHA. However, when it comes to efficiency, in this study the hash type SHA-256 is used because it can be calculated faster with a better level of security. In the hypothesis, the Merkle-Damgård construction method is also proposed to support data integrity verification. Moreover, a cryptographic hash function is a one-way function that converts input data of arbitrary length and produces output of a fixed length so that it can be used to securely authenticate users without storing passwords locally. Since basically, cryptographic hash functions have many different uses in various situations, this research resulted in the use of hash algorithms in verifying the integrity and authenticity of certificate information.


Author(s):  
Ambika N.

The internet of things is the technology that aims to provide a common platform to the devices of varying capabilities to communicate. Industrial internet of things (IIoT) systems can perform better using these devices in combination with SDN network and blockchain technology. The suggestion uses random space learning (RSL) comprising three stages. The random subspace learning strategy is a troupe learning procedure called attributes bagging. It improves forecast and order errands as it utilizes group development of base classifiers rather than a solitary classifier, and it takes arbitrary subsets of properties rather than the whole arrangement of attributes. The system uses the blockchain methodology to secure the system. SDN networks aim to better the transmission of data in industrial IoT devices. Misrouting and forged attacks are some of the common attacks in these systems. The proposal provides better reliability than the previous contribution by 2.7%.


2021 ◽  
Vol 2 (4) ◽  
pp. 227-234
Author(s):  
Dermawan Lumban Toruan

Document file is a means of transforming information from one person to another or from a group to another. The development of computerized technology has greatly increased. Document files are very vulnerable to fraud, eavesdropping or data theft by irresponsible parties. In order to maintain the security of document files, this can be done by using cryptographic techniques. Cryptography is the science of keeping data secure. Cryptography is one of the data security methods that can be used to maintain data authenticity, data confidentiality, and the authenticity of data transmission. SHA, which stands for Secure Hash Algorithm, is a standard hash function published by NIST (National Institute of Standards and Technology), (NIST, 1995a). This study will use the SHA-1 method to secure the authenticity of document files, document confidentiality, document integrity, and document authentication. This study describes the security process for detecting the authenticity of document files using the SHA-1 method in the form of detection so that confidential documents sent via public telecommunications cannot be changed or modified by unauthorized persons or unauthorized persons. This is done as an effort to minimize acts of fraud, hoaxes, or misuse of document files.


2018 ◽  
Vol 9 (2) ◽  
pp. 16-26
Author(s):  
Meena Kumari ◽  
Rajender Nath

Cloud computing is a revolution in the IT industry due to its characteristics of scalability, efficiency, and availability. Along with these benefits, cloud computing comes with certain security issues that a user has to take into consideration. Security of data and its integrity verification in the cloud are major issues that act as a barrier to the adoption of cloud computing. In the authors' previously published work, a one-way hash function was proposed to verify the data integrity at the cloud storage site. This article further extends prior work. In this article, the modified one-way hash algorithm is implemented by using a Hadoop distributed file system (HDFS) service of Hadoop environment and analytical testing is performed to ascertain its performance. Statistical and experimental results reveal the proposed algorithm is robust, which ensures data integrity and fulfills mostly all essential features of a secure hash function.


2018 ◽  
Author(s):  
Dick Bierman ◽  
Jacob Jolij

We have tested the feasibility of a method to prevent the occurrence of so-called Questionable Research Practices (QRP). A part from embedded pre-registration the major aspect of the system is real-time uploading of data on a secure server. We outline the method, discuss the drop-out treatment and compare it to the Born-open data method, and report on our preliminary experiences. We also discuss the extension of the data-integrity system from secure server to use of blockchain technology.


2018 ◽  
Vol 35 (2) ◽  
pp. 40-47
Author(s):  
S. M. Doguchaeva

The era of digital transformation provides the opportunity for leading companies to change priorities - to begin to take care of the support environment using innovative technologies and become a leading creative platform open for innovation. The successful development of the digital world, the blockchain technology, the Internet of things – the mechanism which will change the financial world. 


Author(s):  
Keith M. Martin

This chapter discusses cryptographic mechanisms for providing data integrity. We begin by identifying different levels of data integrity that can be provided. We then look in detail at hash functions, explaining the different security properties that they have, as well as presenting several different applications of a hash function. We then look at hash function design and illustrate this by discussing the hash function SHA-3. Next, we discuss message authentication codes (MACs), presenting a basic model and discussing basic properties. We compare two different MAC constructions, CBC-MAC and HMAC. Finally, we consider different ways of using MACs together with encryption. We focus on authenticated encryption modes, and illustrate these by describing Galois Counter mode.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1631
Author(s):  
Emilio Abad-Segura ◽  
Alfonso Infante-Moro ◽  
Mariana-Daniela González-Zamar ◽  
Eloy López-Meneses

The scope of blockchain technology, initially associated with the cryptocurrency Bitcoin, is greater due to the multiple applications in various disciplines. Its use in accounting lies mainly in the fact that it reduces risks and the eventuality of fraud, eliminates human error, promotes efficiency, and increases transparency and reliability. This means that different economic sectors assume it as a recording and management instrument. The aim is to examine current and emerging research lines at a global level on blockchain technology for secure accounting management. The evolution of the publication of the number of articles between 2016 and 2020 was analyzed. Statistical and mathematical techniques were applied to a sample of 1130 records from the Scopus database. The data uncovered a polynomial trend in this period. The seven main lines of work were identified: blockchain, network security, information management, digital storage, edge computing, commerce, and the Internet of Things. The ten most outstanding emerging research lines are detected. This study provides the past and future thematic axes on this incipient field of knowledge, which is a tool for decision-making by academics, researchers, and directors of research investment programs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinhua Fu ◽  
Sihai Qiao ◽  
Yongzhong Huang ◽  
Xueming Si ◽  
Bin Li ◽  
...  

Blockchain is widely used in encrypted currency, Internet of Things (IoT), supply chain finance, data sharing, and other fields. However, there are security problems in blockchains to varying degrees. As an important component of blockchain, hash function has relatively low computational efficiency. Therefore, this paper proposes a new scheme to optimize the blockchain hashing algorithm based on PRCA (Proactive Reconfigurable Computing Architecture). In order to improve the calculation performance of hashing function, the paper realizes the pipeline hashing algorithm and optimizes the efficiency of communication facilities and network data transmission by combining blockchains with mimic computers. Meanwhile, to ensure the security of data information, this paper chooses lightweight hashing algorithm to do multiple hashing and transforms the hash algorithm structure as well. The experimental results show that the scheme given in the paper not only improves the security of blockchains but also improves the efficiency of data processing.


Sign in / Sign up

Export Citation Format

Share Document