scholarly journals Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources

2019 ◽  
Vol 9 (19) ◽  
pp. 4169 ◽  
Author(s):  
Dimitris Skarpalezos ◽  
Anastasia Detsi

The present review article attempts to summarize the use of deep eutectic solvents in the extraction of flavonoids, one of the most important classes of plant secondary metabolites. All of the applications reviewed have reported success in isolation and extraction of the target compounds; competitive, if not superior, extraction rates compared with conventional solvents; and satisfactory behavior of the extract in the latter applications (such as direct analysis, synthesis, or catalysis), wherever attempted.

Author(s):  
ARCHANA TIWARI ◽  
AVINASH TIWARI

Plants are not only the source of food, oxygen, and shelter, but the same are also a potential foundation of medicines. Many natural and plant-derived antimicrobial and wound healing compounds have been recognized. In the present review, we have studied the main bioactive components of Acacia catechu with their medicinal roles. Most of these bioactive components are secondary metabolites which are produced by plants as side products of certain physiological reactions and are of no use for the plant itself. These components have been reported for their medicinal properties. In this review, we have mentioned some antibacterial, antifungal, and wound healing properties of A. catechu with its known bioactive components. The aim of this review article is, to enlist the possible potent bioactive components of the plant, against pathogenic microbes that can replace the use of chemicals and synthetic antibiotics for the treatment of skin infections and other diseases.


Author(s):  
Sreya Kosanam ◽  
Rajeshwari Pasupula

Plants are the major source of human living. Since the beginning of the era, plants have been used for medicinal purposes. There is dire to explore the mechanism of chemical constituents in plants and particularly saponins, cardiac glycosides, and flavonoids due to their mechanism to save damaged cells in cardiac muscle. Databases like Google Scholar, Medline, PubMed, and the Directory of Open Access Journals were searched to find the articles describing the cardioprotective mechanism of medicinal plants. Saponin, flavonoids, glycoside, steroid, alkaloids, tannin, phenol, phlorotannin, terpenoids, and anthraquinone are chemical constituents in plants that enhance cardioprotection activity and decreases cardiac abnormalities. The current review article provides data on the use of medicinal plants, specifically against cardiac diseases, as well as an investigation of molecules/phytoconstituents as plant secondary metabolites for their cardioprotective potential.


2020 ◽  
Vol 44 (1) ◽  
pp. 29-38
Author(s):  
Ajwad A. M. Assumaidaee

Mycotoxicosis refers to the deleterious pathological effects of different types toxins produced by some worldwide distributing fungi. Mycotoxins, as secondary metabolites are affecting different organs and systems both in animal and human beings. Zeralenone (ZEA), the well-known estrogenic mycotoxins, is an immunotoxic agent. This macrocyclic beta-resorcyclic acid lactone, is mycotoxin procreated as a secondary metabolic byproduct by several types of Fusarium, encompassing F. roseum,F. culmorum, F. graminearum and different other types. Attributing to its potent estrogenic activity, ZEA has been incriminated as one of the major causes of female reproductive disorders. Thus, the purpose of the present review article is to appraise the pathophysiological consequences and sub sequent explore the progress in the research field of zearalenone immunotoxicities.


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985224 ◽  
Author(s):  
Syed Muhammad Ali Shah ◽  
Muhammad Akram ◽  
Muhammad Riaz ◽  
Naveed Munir ◽  
Ghulam Rasool

Since the beginning of human civilization, plants have been used in alleviating the human distress and it was recorded for about thousands of years ago that the plants are being used for medicinal purposes. Natural bioactive compounds called phytochemicals are obtained from medicinal plants, vegetables, and fruits, which functions to combat against various ailments. There is dire need to explore the plant biodiversity for its medicinal and pharmacological potentials. Different databases such as Google scholar, Medline, PubMed, and the Directory of Open Access Journals were searched to find the articles describing the cardioprotective function of medicinal plants. Various substances from a variety of plant species are used for the treatment of cardiovascular abnormalities. The cardioprotective plants contain a variety of bioactive compounds, including diosgenin, isoflavones, sulforaphane, carotinized, catechin, and quercetin, have been proved to enhance cardioprotection, hence reducing the risk of cardiac abnormalities. The present review article provides the data on the use of medicinal plants particularly against cardiac diseases and to explore the molecules/phytoconstituents as plant secondary metabolites for their cardioprotective potential.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


2012 ◽  
Vol 13 (5) ◽  
pp. 632-650 ◽  
Author(s):  
David M. Pereira ◽  
Patricia Valentao ◽  
Georgina Correia-da-Silva ◽  
Natercia Teixeira ◽  
Paula B. Andrade

Sign in / Sign up

Export Citation Format

Share Document