scholarly journals Cardioprotective Potential of Plant-Derived Molecules: A Scientific and Medicinal Approach

Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985224 ◽  
Author(s):  
Syed Muhammad Ali Shah ◽  
Muhammad Akram ◽  
Muhammad Riaz ◽  
Naveed Munir ◽  
Ghulam Rasool

Since the beginning of human civilization, plants have been used in alleviating the human distress and it was recorded for about thousands of years ago that the plants are being used for medicinal purposes. Natural bioactive compounds called phytochemicals are obtained from medicinal plants, vegetables, and fruits, which functions to combat against various ailments. There is dire need to explore the plant biodiversity for its medicinal and pharmacological potentials. Different databases such as Google scholar, Medline, PubMed, and the Directory of Open Access Journals were searched to find the articles describing the cardioprotective function of medicinal plants. Various substances from a variety of plant species are used for the treatment of cardiovascular abnormalities. The cardioprotective plants contain a variety of bioactive compounds, including diosgenin, isoflavones, sulforaphane, carotinized, catechin, and quercetin, have been proved to enhance cardioprotection, hence reducing the risk of cardiac abnormalities. The present review article provides the data on the use of medicinal plants particularly against cardiac diseases and to explore the molecules/phytoconstituents as plant secondary metabolites for their cardioprotective potential.

Author(s):  
Sreya Kosanam ◽  
Rajeshwari Pasupula

Plants are the major source of human living. Since the beginning of the era, plants have been used for medicinal purposes. There is dire to explore the mechanism of chemical constituents in plants and particularly saponins, cardiac glycosides, and flavonoids due to their mechanism to save damaged cells in cardiac muscle. Databases like Google Scholar, Medline, PubMed, and the Directory of Open Access Journals were searched to find the articles describing the cardioprotective mechanism of medicinal plants. Saponin, flavonoids, glycoside, steroid, alkaloids, tannin, phenol, phlorotannin, terpenoids, and anthraquinone are chemical constituents in plants that enhance cardioprotection activity and decreases cardiac abnormalities. The current review article provides data on the use of medicinal plants, specifically against cardiac diseases, as well as an investigation of molecules/phytoconstituents as plant secondary metabolites for their cardioprotective potential.


2019 ◽  
Vol 9 (19) ◽  
pp. 4169 ◽  
Author(s):  
Dimitris Skarpalezos ◽  
Anastasia Detsi

The present review article attempts to summarize the use of deep eutectic solvents in the extraction of flavonoids, one of the most important classes of plant secondary metabolites. All of the applications reviewed have reported success in isolation and extraction of the target compounds; competitive, if not superior, extraction rates compared with conventional solvents; and satisfactory behavior of the extract in the latter applications (such as direct analysis, synthesis, or catalysis), wherever attempted.


2012 ◽  
Vol 57 (No. 1) ◽  
pp. 1-35 ◽  
Author(s):  
K. Hruska ◽  
M. Franek

Sulfonamides are widely used in treatment of animals and humans but pose a risk as environmental pollutants. An analysis of 1588 publications focused on sulfonamides is presented here. The review deals with environmental pollution with sulfonamides, described in papers indexed in the database Web of Science from 1938 to 2011. More in depth details are presented regarding publication activity during the last ten years in which 1255 papers have been published by authors from 1100 institutions. Papers, published during the last three years and mainly in 2011, are listed in comprehensive tables, sorted according to five criteria: reviews, contaminated niches, risk of contamination, sulfonamide transformation and methods of analysis. Key words and shortened abstracts direct the reader to the topics of interest. Hyperlinks to full papers, published in open access journals, are another aid in knowledge dissemination. This design of the review article allows easy navigation through vast amounts of information. Finally, a case report illustrates experiences from the author’s laboratory with sulfamethazine determination in pig slurry by ELISA. The reported results highlight the need for updating the legal directives for environmental protection.  


2016 ◽  
Vol 34 (No. 5) ◽  
pp. 377-390 ◽  
Author(s):  
K. Carović-Stanko ◽  
M. Petek ◽  
M. Grdiša ◽  
J. Pintar ◽  
D. Bedeković ◽  
...  

Historically, species of the family Lamiaceae have enjoyed a rich tradition of use for flavouring, food preservation, and medicinal purposes, due to both their curative and their preventive properties. It is well known that each species has a special, complex mixture of bioactive compounds in which each component contributes to its overall bioactivity. Their value lays in the production of a wide range of secondary metabolites with potent antibacterial, antioxidant, anti-inflammatory, antimicrobial, antiviral, and anticancer activities. This review focuses on the Lamiaceae species and their secondary metabolites encompassing a wide array of beneficial functions and their applicability as sources of functional foods. It could help in addressing specific consumer needs as healthy diet is a part of the lifestyle that maintains or improves overall health.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 313
Author(s):  
Karma Yeshi ◽  
Darren Crayn ◽  
Edita Ritmejerytė ◽  
Phurpa Wangchuk

Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: “stress-affected plants,” “plant secondary metabolites, “abiotic stress,” “climatic influence,” “pharmacological activities,” “bioactive compounds,” “drug discovery,” and “medicinal plants” and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.


2019 ◽  
Vol 37 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Jean Carlos Cardoso ◽  
Maria Eduarda BS de Oliveira ◽  
Fernanda de CI Cardoso

ABSTRACT The production of secondary metabolites from medicinal plants, also called Plant-Derived Medicinal Compounds (PDMC), is gaining ground in the last decade. Concomitant to the increase in the knowledge about pharmacological properties of these compounds, horticultural plants are becoming the most important, sustainable and low-cost biomass source to obtain high-complex PDMCs to be used as medicaments. Biotechnological tools, including plant cell and tissue culture and plant genetic transformation, are increasingly being employed to produce high quality and rare PDMC under in vitro conditions. The proper use of these technologies requires studies in organogenesis to allow for better control of in vitro plant development and, thus, to the production of specific tissues and activation of biochemical routes that result in the biosynthesis of the target PDMCs. Either biotic or abiotic factors, called elicitors, are responsible for triggering the PDMC synthesis. In vitro techniques, when compared to the conventional cultivation of medicinal plants in greenhouse or in the field, have the advantages of (1) producing PDMCs in sterile and controlled environmental conditions, allowing better control of the developmental processes, such as organogenesis, and (2) producing tissues with high PDMC contents, due to the efficient use of different biotic and abiotic elicitors. Nevertheless, the process has many challenges, e.g., the establishment of step-by-step protocols for in vitro biomass and PDMC production, both involving and being affected by many factors. Other limitations are the high costs in opposition to the relatively cheaper alternative of growing medicinal plants conventionally. This paper aims to quickly review the general origin of plant secondary metabolites, the leading techniques and recent advances for PDMC in vitro production, and the challenges around the use of this promising technology.


Author(s):  
Israr Ul Hassan ◽  
Mohammed Idrees ◽  
Gowhar Ahmad Naikoo ◽  
Luay Rashan ◽  
Abdelbary Elhissi ◽  
...  

 The Dhofar region of Oman is extremely opulent in plant biodiversity in comparison to other parts of the country. Most of the cultivated, medicinal and wild plants of the region are available in the mountainous side and hilly areas of Dhofar. The plants produce products from primary metabolism and others from secondary metabolism. On the basis of active constituents plants can be categorized into two groups:1. Medicinal plants and2. Aromatic plants.Over 250 complex chemicals have been recognized and extracted from herbal sources. In this review article, we discuss a selection of medicinal plants of the Dhofar region of Oman which are rich in active constituents and through recent reports discuss the application of the most active constituents. Among the medicinal plants of the Dhofar region, frankincense is also a well-known indicator of the region and has a unique position through its medicinal properties of its oil and gum resin.


2020 ◽  
Vol 22 (1) ◽  
pp. 136-149
Author(s):  
Arpita Roy

: Medicinal plants produce a diverse group of phytocompounds like anthraquinones, alkaloids, anthocyanins, flavonoids, saponins, and terpenes which are used in pharmaceutical, perfume, cosmetics, dye and flavor industries. Commercial source of these metabolites is field-grown plants, which are generally influenced by seasonal changes. Biotechnology possesses a significant role in production of high-value secondary metabolites. By incorporating biotechnological methods, it is feasible to manage biosynthetic pathways of the plant to enhance phytocompound production that is of pharmaceutical interest. Plant cell suspension, shoot, adventitious root and hairy root culture are considered as alternative methods for important bioactive compound production. These methods are controllable, sustainable and overcome several inconveniences for large scale secondary metabolites production. At present research on hairy root culture for valuable bioactive compound production has gained a lot of attention. Agrobacterium rhizogenes is an agent which causes hairy root disease in a plant and this leads to the neoplastic growth of root which is characterized by higher growth rate and genetic stability. Various studies explore the hairy root culture for production of a wide range of bioactive compounds. Scale-up of hairy root culture using bioreactors has provided an opportunity to enhance bioactive compound production at the commercial level. The present review discusses the role of hairy root culture in the production of valuable bioactive compounds, the effect of culture parameters on bioactive compound production and bioreactor applications.


2017 ◽  
Vol 63 (3) ◽  
pp. 92-101 ◽  
Author(s):  
Ľudmila Leváková ◽  
Magdaléna Lacko-Bartošová

Abstract Wheat (genus Triticum) is considered to be an important source of polyphenols, plant secondary metabolites with numerous health-promoting effects. Many phytochemicals are responsible for the high antioxidant activity of whole grain products. However, there is a lack of information about composition of phenolic acids and their concentrations in different Triticum species. Despite the fact that the increased consumption of whole grain cereals and whole grain-based products has been closely related to reduced risk of chronic diseases, bioactive compounds found in whole grain cereals have not achieved as much attention as the bioactive compounds in vegetables and fruits. Recent studies have revealed that the content of bioactive compounds and antioxidant capacity of whole grain cereals have been regularly undervalued in the literature, because they contain more polyphenols and other phytochemicals than was reported in the past. Phenolic acids represent a large group of bioactive compounds in cereals. These compounds play a significant role in the possible positive effects of the human diet rich in whole grain cereals, especially in wheat and provide health benefits associated with demonstrably diminished risk of chronic disease development. Ferulic acid, the primary and the most abundant phenolic acid contained in wheat grain, is mainly responsible for the antioxidant activity of wheat, particularly bran fraction. In this paper, selected phenolic compounds in wheat, their antioxidant activity and health benefits related to consumption of whole grain cereals are reviewed.


Sign in / Sign up

Export Citation Format

Share Document