scholarly journals Design and Research of a Color Discrimination Method for Polycrystalline Silicon Cells Based on Laser Detection System

2019 ◽  
Vol 9 (20) ◽  
pp. 4468
Author(s):  
Zijian Chen ◽  
Shiyu Wang ◽  
Lian Zhang ◽  
Zenghong Ma

In this paper, a method of color discrimination based on sample sensitivity to light wavelength is proposed based on the reflection spectra of a large number of samples and the statistical calculation of the measurement data. A laser detection system is designed to realize the color discrimination. For the color discrimination of polycrystalline silicon cells, the most sensitive wavelength, 434 nm, and the least sensitive wavelength, 645 nm, of polycrystalline silicon cells is obtained according to this method. A laser detection system was built to measure the polycrystalline silicon cells. This system consists of two lasers, optical shutters, collimating beam expanding systems, an optical coaxial system, sample platform, collecting lens, and optical power meter or optical sensor. Two laser beams of different wavelengths are beamed coaxially through the optical coaxial system onto a polycrystalline silicon cell and are reflected or scattered. The reflected or scattered lights are collected through a lens with a high number aperture and received separately by the optical power meter. Then the color value of the polycrystalline silicon cell in this system is characterized by the ratio of light intensity data received. The system measured a large number of previous polycrystalline silicon cells to form the different color categories of polycrystalline silicon cells of this system in the computer database. When a new polycrystalline silicon cell is measured, the color discrimination system can automatically classify the new polycrystalline silicon cell to a certain color category in order to achieve color discrimination.

JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 52
Author(s):  
Mochammad Junus ◽  
Yoyok Heru Prasetyo

Kecepatan dalam hal pengiriman data dan komunikasi merupakan hal terus menerus harus diperbaiki dalam era ini. Beberapa permasalahan dapat timbul karena adanya keterlambatan pengiriman data baik itu bertujuan untuk komunikasi atau pengiriman data pengukuran untuk keperluan tertentu. Salah satu solusi yang dapat di lakukan adalah dengan menggunakan fiber optik. Fiber optik kerap digunakan karena keunggulannya dalam kecepatannya dalam hal komunikasi dan pengiriman data. Saat ini, selain untuk berkomunikasi, fiber optik juga banyak dikembangkan di berbagai keperluan. Salah satunya adalah dalam pengiriman data sensor. Penelitian ini mengangkat topik permasalahan yaitu bagaimana mendesain sebuah sensor massa, dengan menggunakan fiber optik sebagai sensor massa dengan memanfaatkan metode macrobending. Kabel yang digunakan pada penelitian ini menggunakan tipe patch core singlemode FC to FC yang dililit dengan variasi 1,3,5,7, dan 9 kali lilitan pada selang elastis berdiamter ¼ inchi, ½ inchi, 5/8 inchi, ¾ inchi dan 1 inchi dengan massa 0,1 Kg- 10 Kg dengan range 200gram. Untuk input menggunkan OLS (Optical light Source) dengan nilai -7 dBm dan nilai output di terima dan dibaca oleh OPM (Optical Power Meter). Dari hasil pengukuran diperoleh nilai daya output, loss, losses macrobending, dan rugi-rugi tekanan. Dari penelitian ini, hasil yang didapatkan adalah sebuah rumus matematis hubungan antara beban atau massa dengan rugi-rugi tekanan pada kabel fiber optik. Speed ​​in terms of data transmission and communication is something that must continuously be improved in this era. Several problems can arise due to delays in sending data, either for communication purposes or for sending measurement data for certain purposes. One solution that can be done is to use optical fiber. Optical fiber is often used because of its superiority in speed in terms of communication and data transmission. Currently, in addition to communicating, optical fiber is also being developed for various purposes. One of them is in sending sensor data. This research raises the topic of the problem, namely how to design a mass sensor, using optical fiber as a mass sensor by utilizing the macrobending method. The cables used in this study used a single patch core type FC to FC wrapped with variations of 1,3,5,7, and 9 turns on elastic hoses with diameters of ¼ inch, ½ inch, 5/8 inch, ¾ inch and 1 inch. with a mass of 0.1 kg - 10 kg with a range of 200 grams. For input using an OLS (Optical light Source) with a value of -7 dBm and the output value is received and read by the OPM (Optical Power Meter). From the measurement results obtained the value of output power, loss, macrobending losses, and pressure losses. From this research, the results obtained are a mathematical formula for the relationship between load or mass and pressure losses on fiber optic cables.


2021 ◽  
Vol 16 (2) ◽  
pp. 188-195
Author(s):  
Keyuan Liu ◽  
Haibin Li ◽  
Ya Wang

The weak direct current (DC) signals detected and converted by the photodetector are output to the mobile phone by voltage/frequency switching, and the signals are processed by the mobile phone APP and audio conversion module. The photodetector is equipped with the automatic switching function to design an optical power meter and detect weak signals. Meanwhile, the optical cable identification system is analyzed and combined with the optical power meter to generate an optical fiber sensing network to improve the weak alternating current (AC) signal detection. This network needs data fusion in sensor nodes’ data collection. The cluster routing protocol is introduced and combined with the back propagation neural network (BPNN) to propose a method suitable for this photoelectric transmission and improve the information fusion and accuracy. In the experiment, the optical power meter is output in gears first, and the output waveforms are normal. The photodiode’s optical power is adjusted to obtain different frequencies on the oscilloscope. In the proposed optical fiber sensing network, weak AC signals are amplified significantly, and different optical fiber lines can be distinguished in the optical cables. The proposed information collection method can reduce network communication and node energy consumption.


Author(s):  
Mochamad Zaeynuri Setiawan ◽  
Fachrudin Hunaini ◽  
Mohamad Mukhsim

The phenomenon that often arises in a substation is the problem of partial discharge in outgoing cable insulation. Partial discharge is a jump of positive and negative ions that are not supposed to meet so that it can cause a spark jump. If a partial discharge is left too long it can cause insulation failure, the sound of snakes like hissing and the most can cause a flashover on the outgoing cable. Then a partial discharge detection prototype was made in the cable insulation in order to anticipate the isolation interference in the outgoing cable. Can simplify the work of substation operators to check the reliability of insulation on the outgoing side of each cubicle. So it was compiled as a method for measuring sound waves caused by partial discharge in the process of measuring using a microphone sensor, the Arduino Mega 2560 module as a microcontroller, the LCD TFT as a monitoring and the MicroSD card module as its storage. The microphone sensor is a sensor that has a high sensitivity to sound, has 2 analog and digital readings, and is easily designed with a microcontroller. Basically the unit of measure measured at partial discharge is Decibels. The results of the prototype can be applied to the cubicle and the way it works is to match the prototype to the outgoing cubicle cable then measure from the cable boots connector to the bottom of the outgoing cable with a distance of 1 meter. Then the measurement results will be monitored on the TFT LCD screen in the form of measurement results, graphs and categories on partial discharge. In this design the measurement data made by the microphone can be stored with microSD so that it can make an evaluation of partial discharge handling in outgoing cable insulation.


2019 ◽  
Vol 9 (2) ◽  
pp. 11-15
Author(s):  
Sisca Arisya Harry Andhina

Macrobending often occurs in optical fibers that embedded in the ground due to shifting of soil or rocks in the ground causing interference in transmission. In this study used single-mode-multimode-singlemode fiber optic cable connected manually and axially measured using a light source test equipment and optical power meter and the results will be compared. The measurement results obtained the greater  value of macrobending losses with the smaller the diameter of the winding, and the greater the number of turns. The highest value of macrobending losses in multimode cables is -1.48dB at 0.5cm diameter with 5 turns, highest value of macrobending losses on single mode cables is -12.73dB at 0.5cm diameter with 5 turns,  lowest value of macrobending losses for multimode cables is -0.44dB at 5cm diameter with 1 twist, lowest macrobending losses in singlemode cables is -1.69dB at 5cm diameter with 1 twist. While the value of macrobending losses on axially connected SMS cables shows the highest value of macrobending losses on multimode cables is -1.12dB in diameter of 0.5cm with 5 turns,  highest value of macrobending losses on singlemode cables is -1.18dB at diameter of 0.5cm with 5 turns,  lowest value for macrobending losses on multimode cables is -0.66dB at 5cm in diameter with 1 twist, the smallest value for macrobending losses on singlemode cables is -0.27dB at 5cm diameter with 1 twist . The measurement results also showed that the macrobending losses of manually connected SMS cables were greater than the macrobending losses of axially connected SMS cables.


CICTP 2019 ◽  
2019 ◽  
Author(s):  
Xingtai He ◽  
Guofeng Zeng ◽  
GuoQiang Wang ◽  
Feng Ye ◽  
Yihong Yuan

2020 ◽  
Vol 91 (1-2) ◽  
pp. 143-151
Author(s):  
Zhouqiang Zhang ◽  
Sihao Bai ◽  
Guang-shen Xu ◽  
Xuejing Liu ◽  
Jiangtao Jia ◽  
...  

The knitting needle cylinder is one of the core parts of a hosiery machine. The operation of its needles can directly affect the production quality and efficiency of the hosiery machine. To reduce the production loss of a hosiery machine caused by knitting needle faults, a knitting needle fault detection system for hosiery machines based on a synergistic combination of laser detection and machine vision is proposed in this paper. When the system was operating normally, a photoelectric detector collected the laser signal reflected by the knitting needle and the system monitored the operation of the knitting needle using the ratio of adjacent peak-to-peak distances of the signals. When a fault signal was detected, the hosiery machine was stopped by the system immediately, and a charge-coupled device camera was used to take an image of the faulty knitting needle. After image preprocessing, the faulty knitting needle could be identified quickly and accurately using an image region size classifier based on a decision tree. The experimental results showed that a single image classification by the classifier could be performed in as little as 0.002 s.


Sign in / Sign up

Export Citation Format

Share Document