scholarly journals Spatial and Temporal Variation of Wind Erosion Climatic Erosivity and Its Response to ENSO in the Otindag Desert, China

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 614
Author(s):  
Lou ◽  
Wang ◽  
Cai

Wind erosion is a major cause of soil losses in China’s drylands which is further stimulated by climate variability and fragile ecological conditions. Climatic erosivity is an important index of wind erosion, therefore, evaluation of its spatiotemporal variations and relationship with the El Niño–Southern Oscillation (ENSO) will provide a theoretical basis for the comprehensive management and prevention of soil erosion. In this study, by using the climatic erosivity equation, geographic information system (GIS) and geostatistical analysis, we quantified the climatic erosivity, explored its spatiotemporal variations, and detected the effects of the Multivariate ENSO Index (MEI) on climatic erosivity in the Otindag Desert during the period of 1980–2016. The results indicated that the climatic erosivity (C-factor value) ranged from 82–445, and it decreased from the western margin to the eastern margin of the desert. The climatic erosivity showed a significant downward trend at seasonal and annual scales (p < 0.05). As far as spring, autumn and annual climatic erosivity, the whole region showed a downward trend, however, the summer and winter climatic erosivity varied spatially, in which the central and western regions showed a downward trend, but the eastern region showed an upward trend. The results showed that the average climatic erosivity is weaker during La Niña events than during El Niño events. The climatic erosivity recorded by 14 of the 20 meteorological stations, all located in central and west regions, exhibited a significant correlation with MEI (p < 0.05). The ENSO has a significant impact on climatic erosivity.

2010 ◽  
Vol 32 (2) ◽  
pp. 215 ◽  
Author(s):  
S. T. Garnett ◽  
G. Williamson

The patterns of rainfall early in the rainy season vary substantially across northern Australia, even in sites with the same annual average. This has biophysical and economic implications in terms of land and infrastructure management, resource availability and capacity, and access. Daily patterns in long-term rainfall records in Australia north of 23°S subject to regular monsoonal rainfall were compared with threshold levels for dryland and wetland seed germination, initiation of the growing season, patterns of gaps between early storms and the heaviness of the first falls, correlations between thresholds, spatial variation in correlation with the Southern Oscillation Index (SOI) and temporal trends in mean threshold dates. The earliest rains sufficient to cause seed germination or generate fresh fodder occur in the north-west of the Northern Territory with the average date being later to the south, east and west. Initial falls of the rainy season are heaviest, however, on Cape York Peninsula so that the time between first falls and saturation is shortest in the east. The probability of extended gaps between rainfall events increased from north to south. When the SOI is taken into account, no change in timing could be detected at the few sites with records of sufficient duration. However, because of changes in SOI frequency, rains are tending to start earlier in the drier parts of the north and north-west and later in the east. This may be because anthropogenic climate change is resulting in fewer classical El Niño Southern Oscillation events and more frequent El Niño Modoki climate anomalies.


Climate ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 77 ◽  
Author(s):  
Bangyou Zheng ◽  
Scott Chapman ◽  
Karine Chenu

El Niño–Southern Oscillation strongly influences rainfall and temperature patterns in Eastern Australia, with major impacts on frost, heat, and drought stresses, and potential consequences for wheat production. Wheat phenology is a key factor to adapt to the risk of frost, heat, and drought stresses in the Australian wheatbelt. This study explores broad and specific options to adapt wheat cropping systems to El Niño–Southern Oscillation, and more specifically, to the Southern Oscillation Index (SOI) phases ahead of the season (i.e., April forecast) in Eastern Australia, when wheat producers make their most crucial management decisions. Crop model simulations were performed for commercially-grown wheat varieties, as well as for virtual genotypes representing possible combinations of phenology alleles that are currently present in the Australian wheat germplasm pool. Different adaptation strategies were tested at the site level, across Eastern Australia, for a wide range of sowing dates and nitrogen applications over long-term historical weather records (1900–2016). The results highlight that a fixed adaptation system, with genotype maturities, sowing time, and nitrogen application adapted to each location would greatly increase wheat productivity compared to sowing a mid-maturity genotype, mid-season, using current practices for nitrogen applications. Tactical adaptation of both genotype and management to the different SOI phases and to different levels of initial Plant Available Water (‘PAW & SOI adaptation’) resulted in further yield improvement. Site long-term increases in yield and gross margin were up to 1.15 t·ha−1 and AU$ 223.0 ha−1 for fixed adaptation (0.78 t·ha−1 and AU$ 153 ha−1 on average across the whole region), and up to an extra 0.26 t·ha−1 and AU$ 63.9 ha−1 for tactical adaptation. For the whole eastern region, these results correspond to an annual AU$ 440 M increase for the fixed adaptation, and an extra AU$ 188 M for the PAW & SOI tactical adaptation. The benefits of PAW & SOI tactical adaptation could be useful for growers to adjust farm management practices according to pre-sowing seasonal conditions and the seasonal climate forecast.


2009 ◽  
Vol 9 (30) ◽  
pp. 1824-1844
Author(s):  
Simon Muti ◽  
◽  
W Ng'etich ◽  

Although the equatorial Eastern region of Africa is adjacent to the Indian Ocean, it tends to exhibit a drier climate rather than one characterized by abundant tropical rains. A number of studies on rainfall variability in the East African region have tended to suggest a stronger influence of local factors in controlling rainfall amounts and their characteristics rather than the global wind circulation system. A climatic phenomenon that is locally termed “June winds” is unique to East Africa’s coastal region. The study mainly involved analysing rainfall anomalies and means of 39- year meteorological data from the region and data from earlier studies about the region. The results indicate that June winds occur annually after the onset of long rains between the months of May and June. They impart subsidence, drying and cloud free conditions, altering the climatological properties in the areas they traverse. The attainment of peak June wind velocities causes a characteristic depression in rainfall probability and amounts on their course, similar to the ‘Ganges depression’ of temperatures in the Indian subcontinent, which in turn affects available soil moisture for crop growth. The results also reveal existence of years of “above-normal rains” (herein referred to as El Niño years) and years of “below-normal rains” (herein referred to as La Niña years) which are associated and modulated by El Niño southern oscillation. They also reveal that drought years tend to occur in succession and that the June winds tend to be suppressed or absent during El Niño years, but strongly associate with La Niña years. The study suggests that the frequency and therefore the ratio of La Niña years to El Niño years have been increasing. The study also suggests possibility of developing a decision support system for farmers in resource use and allocation based predicted time of occurrence of the June winds.


2021 ◽  
Vol 21 (11) ◽  
pp. 8511-8530
Author(s):  
Yan Yu ◽  
Paul Ginoux

Abstract. Despite Australian dust's critical role in the regional climate and surrounding marine ecosystems, the controlling factors of the spatiotemporal variations of Australian dust are not fully understood. Here we assess the connections between observed spatiotemporal variations of Australian dust with key modes of large-scale climate variability, namely the El Niño–Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO). Multiple dust observations from the Aerosol Robotic Network (AERONET), weather stations, and satellite instruments, namely the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), are examined. The assessed multiple dust observations consistently identify the natural and agricultural dust hotspots in Australia, including the Lake Eyre basin, Lake Torrens basin, Lake Frome basin, Simpson Desert, Barwon–Darling basin, Riverina, Barkly Tableland, and the lee side of the Great Dividing Range, as well as a country-wide, austral spring-to-summer peak in dust activity. Our regression analysis of observed dust optical depth (DOD) upon an ocean Niño index confirms previous model-based findings on the enhanced dust activity in southern and eastern Australia during the subsequent austral spring and summer dust season following the strengthening of austral wintertime El Niño. Our analysis further indicates the modulation of the ENSO–dust relationship with the MJO phases. During sequential MJO phases, the dust-active center moves from west to east, associated with the eastward propagation of MJO, with the maximum enhancement in dust activity at about 120, 130, and 140∘ E, corresponding to MJO phases 1–2, 3–4, and 5–6, respectively. MJO phases 3–6 are favorable for enhanced ENSO modulation of dust activity, especially the occurrence of extreme dust events, in southeastern Australia, currently hypothesized to be attributed to the interaction between MJO-induced anomalies in convection and wind and ENSO-induced anomalies in soil moisture and vegetation.


Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Nkanyiso Mbatha ◽  
Sifiso Xulu

The variability of temperature and precipitation influenced by El Niño-Southern Oscillation (ENSO) is potentially one of key factors contributing to vegetation product in southern Africa. Thus, understanding large-scale ocean–atmospheric phenomena like the ENSO and Indian Ocean Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002–2017) of Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE) platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA) model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress. The region in the southern part of the HiP which has land cover dominated by savanna experienced the most impact of the strong El Niño. Both the HiP NDVI inter-annual Mann–Kendal trend test and sequential Mann–Kendall (SQ-MK) test indicated a significant downward trend during the El Niño years of 2003 and 2014–2015. The SQ-MK significant trend turning point which was thought to be associated with the 2014–2015 El Niño periods begun in November 2012. The wavelet coherence and coherence phase indicated a positive teleconnection/correlation between soil temperatures, precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship between the NDVI and climatic parameters especially at a period band of 8–16 months.


2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


Sign in / Sign up

Export Citation Format

Share Document