scholarly journals A Comprehensive Gridded Dataset Associated to the Climate Change Effect on the Water Resources in the Grand Est Region, France

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1026
Author(s):  
Mărgărit-Mircea Nistor ◽  
Ionel Haidu ◽  
Ştefan Dezsi ◽  
Cristina Ştefan

Water resources and environment quality are nowadays under high pressure because of climate change, land use practices, as well as human actions. A comprehensive gridded dataset becomes a necessary instrument to assess the risk level at regional scale, and also for territorial planning, the defining strategies to address future natural and anthropological challenges. In order to obtain a complete database with the most important parameters at spatial scale, this study is constructed as a preparation of layers used for various environmental risks, but mostly with the climate change effect on the water resources from the Grand Est region, France. In addition, geological formations, terrain data, and land cover were harmonized as grid format for the study area. Thus, the temperature and precipitation parameters, related to the 1961–1990 (1990s), 2011–2040 (2020s), and 2041–2070 (2050s), become useful data for evapotranspiration, water availability, and effective precipitation calculations. The geology layer indicates the composition and types of aquifers and it contributes to the potential infiltration map (PIM). The morphology of the terrain contributes to the slope angle and PIM. Through the typology of land cover, the pollution load index (PLI) was estimated. The findings indicate intense aridization and the depletion of the effective precipitation (below 650 mm) during the present and future periods. With respect to these concerns, the surface waters and groundwater resources from the Grand Est region are experiencing the negative effects of climate change on runoff and aquifers recharge respectively. In addition, the high PLI in the industrial and agricultural areas contribute to the possibility of the increasing water resources vulnerability. The affected areas extend mainly in the western, north-central, and north-eastern parts of the region, mainly in the Rhine, Aube, and Marne Valleys. Considered as a precious resource in the region, the water management should follow best practices for vulnerability and risk assessment, and further to delineate the protection areas. As a comprehensive gridded dataset, the calculations and original maps presented in this paper represent a complex product with main environmental parameters processed at spatial scale of 1 km2 in ArcGIS. This product has the purpose to integrate the geospatial data for the Grand Est region of France.

2021 ◽  
Author(s):  
Yvan Caballero ◽  
Sandra Lanini ◽  
Pierre Le Cointe ◽  
Stéphanie Pinson ◽  
Guillaume Hevin ◽  
...  

<p>Climate change is expected to have a significant impact on water resources in mountain areas, as it is the case of the Pyrenees range between France, Spain and Andorre. Independently of future changes on rainfall patterns, global temperature rise is likely to provoke larger and earlier snowmelt, and enhanced precipitation deficits during the dry summer season. Exploring the impacts of this future situation on groundwater is essential, as this resource is often important for drinking water, irrigation and breeding uses in mountain regions. However, studies on groundwater recharge in the context of climate change are relatively scarce, as compared to studies focusing on surface water resources.</p><p>We assessed potential groundwater recharge (part of effective precipitation that infiltrates and potentially reach the aquifers) over the Pyrenean range in the framework of the PIRAGUA project, a collaborative multi-national effort funded by the EU’s Interreg POCTEFA program. Based on a gridded (5x5 km²) meteorological dataset derived from observational data by the CLIMPY project, we estimated effective precipitation for each grid cell using a conceptual water balance scheme. The effect of the seasonal change of land cover / land use (based on the Corine Land Cover dataset) on the water budget model has been assessed, and showed the need to include this component for a more accurate simulation. Based on a spatial characterization of the land infiltration capacity, the potential groundwater recharge has been computed for homogeneous groundwater bodies. Results have been compared to the outputs of groundwater models applied on selected karstic catchments using the BALAN code, and to a general knowledge of groundwater recharge rates for different regions within the study zone. Finally, climate change impacts on future IDPR have been explored using scenarios provided by the CLIMPY project.</p><p>The Pyrenees range is a hot-spot for water resources with a tremendous impact over a much broader region in SW Europe, as Pyrenean rivers are fundamental contributors to large systems such as those of the Adour and Garonne (France) or Ebro (Spain), as well as smaller systems in the western and eastern sectors such as the Bidasoa (Spanish Basque Country), Llobregat-Ter-Muga (Catalonia), or Têt-Tech-Aude (France). Our results are relevant for the planning and management of water resources for this important transboundary region in the future, as changes in groundwater recharge will also affect water resources availability.</p><p>Acknowledgments: the project PIRAGUA, is funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra programme (POCTEFA 2014-2020).</p>


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Mărgărit‐Mircea Nistor ◽  
Praveen K. Rai ◽  
Vikas Dugesar ◽  
Varun N. Mishra ◽  
Prafull Singh ◽  
...  

Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


2021 ◽  
Vol 930 (1) ◽  
pp. 012074
Author(s):  
A Chalid ◽  
A Mulyadi

Abstract The community feels the changes in water availability due to climate change will directly impact water availability, especially water availability in rivers, reservoirs and other water reservoirs. The purpose of this analysis is to determine changes in the rainy season shift, changes in mainstay discharge, and the effect of climate change on water balance. The results show a shift in the rainy season and a significant decrease in rainfall during the last ten years. In the Upper Citarum watershed (UCW), there is a change in the maximum and minimum mainstay discharge in the three watersheds. Climate change significantly affects the water balance in a watershed. Meanwhile, in the Krueng Cunda watershed (KCW) and the Woske watersheds (WW), there was a decrease in the value of the water balance, which was the same as the UCW. However, still able to meet the water needs of the population. There was a decrease in the value of the water balance, which was the same as the UCW, but still able to meet the population’s water needs.


Novos Olhares ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98-113
Author(s):  
Ansgar Fellendorf

This research explores how satellite images of Arctic sea ice contribute to climate change discourse. Different discourses require distinct responses. Policy measures are contingent upon representation, be it i.e. a threat or opportunity. The representations discussed are by the NSIDC and NASA, which hold a visual hegemony. First, the introduction discusses visual studies in policy research and identifies a simplified dichotomy of a threat discourse and environmental citizenship. Moreover, the methodology of visual discourse analysis based on poststructuralism is described. The delineated images portray a vertical, planar view allowing for spatial reference. Arctic sea ice is a visible climate change effect and the absence of boundaries, intervisuality with the Earthrise icon and focus on environmental effects support a discourse of citizenship.


Sign in / Sign up

Export Citation Format

Share Document