scholarly journals Shifting surface

Novos Olhares ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98-113
Author(s):  
Ansgar Fellendorf

This research explores how satellite images of Arctic sea ice contribute to climate change discourse. Different discourses require distinct responses. Policy measures are contingent upon representation, be it i.e. a threat or opportunity. The representations discussed are by the NSIDC and NASA, which hold a visual hegemony. First, the introduction discusses visual studies in policy research and identifies a simplified dichotomy of a threat discourse and environmental citizenship. Moreover, the methodology of visual discourse analysis based on poststructuralism is described. The delineated images portray a vertical, planar view allowing for spatial reference. Arctic sea ice is a visible climate change effect and the absence of boundaries, intervisuality with the Earthrise icon and focus on environmental effects support a discourse of citizenship.

2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


2015 ◽  
Vol 51 (9) ◽  
pp. 889-902 ◽  
Author(s):  
G. V. Alekseev ◽  
E. I. Aleksandrov ◽  
N. I. Glok ◽  
N. E. Ivanov ◽  
V. M. Smolyanitsky ◽  
...  

2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2020 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiase ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The Arctic region exhibits some of the most visible signs of climate change globally. Arctic sea ice extent and volume has been declining sharply in recent decades; observations indicate a mean annual decrease of 3.2% since 1980. However, no extensive network of sea ice observations extends back further than the mid-18<sup>th</sup> century and satellite data since the late 1970s; this limits perspectives of sea ice variability on longer time scales. Thus, to understand the processes governing sea-ice cover and variability, predict how sea ice and ocean conditions will respond to anthropogenic climate change and to understand if the shrinking of Arctic sea ice is a unique and irreversible process, longer records of sea ice variability and oceanic conditions are required.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminifera and sedimentary analysis, was applied to a marine sediment core from North East Greenland to reconstruct changes in sea ice extent and palaeoceanographic conditions throughout the early Holocene (ca. 12,400-7,800 cal. yrs. BP). The study aimed to improve the understanding of the interaction between ocean circulation, sea ice and fluctuations of the Zachariae Isstrøm (ZI), one of the main glacier outlets of NE Greenland. Four distinct zones have been identified: Zone 1 (12,400-11,600 cal. yrs. BP) covering the transition from the Younger Dryas into the Holocene which evidences a gradually warming climate, resulting in a retreat of the ZI; Zone 2 (11,600 – 10,300 cal. yrs. BP) which encapsulates two distinct cooling events as a result of cooler surface waters, rapid release of freshwater and local feedback mechanisms. This coincides with sudden re-advances of the ZI followed by gradual retreats; 3) Zone 3 (10,300 – 8,600 cal. yrs. BP) shows warm and stable conditions, with warm surface waters that resulted in the retreat of the ZI; 4) Zone 4 (8,600 – 7,800 cal. yrs. BP) which shows a rapid return to cooler conditions, with cold surface waters and rapid freshwater outbursts resulting in the re-advance of the ZI, forced by decreasing solar insolation and cold surface waters. Our investigation thus indicated that changes in oceanic conditions at the NE Greenland shelf had a significant impact on the extent and melting rate of the ZI glacier.</p>


2018 ◽  
Author(s):  
Marion Lebrun ◽  
Martin Vancoppenolle ◽  
Gurvan Madec ◽  
François Massonnet

Abstract. The recent Arctic sea-ice reduction is associated with an increase in the ice-free season duration, with comparable contributions of earlier retreat and later freeze-up. Here we show that within the next decades, the trends towards later freeze-up should progressively exceed and ultimately double the trend towards an earlier ice retreat date. This feature is robustly found in a hierarchy of climate models and is consistent with a simple mechanism: solar energy is absorbed more efficiently than it can be released in non-solar form until freeze-up. Based on climate change simulations, we envision an increase and a shift of the ice-free season towards fall, which will affect Arctic ecosystems and navigation.


2017 ◽  
Vol 15 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Miyase Christensen ◽  
Annika E Nilsson

2021 ◽  
Author(s):  
Andy Richling ◽  
Uwe Ulbrich ◽  
Henning Rust ◽  
Johannes Riebold ◽  
Dörthe Handorf

<p>Over the last decades the Arctic climate change has been observed with a much faster warming of the Arctic compared to the global average (Arctic amplification) and related sea-ice retreat. These changes in sea ice can affect the large-scale atmospheric circulation over the mid-latitudes, in particular atmospheric blocking, and thus the frequency and severity of extreme events. As a step towards a better understanding of changes in weather and climate extremes over Central Europe associated with Arctic climate change, we first analyze the linkage between recent Arctic sea ice loss and blocking variability using logistic regression models. ERA5 reanalysis data are used on a monthly and seasonal time scale, and specific regional sea ice variabilities are explored. First results indicate an increased occurrence-probability in terms of blocking frequency over Greenland in summer as well as over Scandinavia/Ural in winter during low sea ice conditions. </p>


2020 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>The predominantly Inupiat people of Utqiaġvik, Alaska are among those who will be most impacted by<br>climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals<br>associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and<br>infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and<br>Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change,<br>the subject is not often discussed in the elementary school curriculum. Meanwhile, in many other parts<br>of the world, the impacts of climate change are viewed as abstract and remote. We worked with fifth<br>grade children in Utqiaġvik both to educate them, but also to engage them in helping us communicate<br>to rest of the world, in an emotionally resonant way, the direct impacts of climate change on families in<br>this Arctic region.<br>The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of<br>Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students<br>each at Fred Ipalook Elementary in Utqiaġvik, AK. The scientist gave a short lecture about sea ice and<br>climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure (with<br>interjections from the local outreach specialist). We then showed the students a large poster of<br>historical and projected sea ice decline, and asked the students to help us fill in the white space beneath<br>the lines. The artist led the children in making small art pieces that represent things that are important<br>to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever<br>they wanted). We returned to the class later that week and had each student briefly introduce<br>themselves and their painting, and place it to the large graph of sea ice decline, which included the dire<br>predictions of the RCP8.5 scenario. At the end we added the more hopeful RCP2.6 scenario to end on a<br>positive note. The artist then painted in the more hopeful green line by hand.<br>The result was a poster showing historical and projected Arctic sea ice cover, with 100 beautiful<br>paintings by children of things that are dear to them about their home being squeezed into a smaller<br>region as the sea ice cover diminishes. We scanned all the artwork to make a digital version of the<br>poster, and left the original with the school. These materials are being converted into an interactive<br>webpage where viewers can click on the individual painting for detail, and get selected recordings of the<br>children’s statements about their artwork. This project can serve as a nucleus for communicating to<br>other classes and adults about the real impacts of climate change in people’s lives.</p>


Sign in / Sign up

Export Citation Format

Share Document