scholarly journals Performance Evaluation of Sub-Grid Orographic Parameterization in the WRF Model over Complex Terrain in Central Asia

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1164
Author(s):  
Huoqing Li ◽  
Junjian Liu ◽  
Hailiang Zhang ◽  
Chenxiang Ju ◽  
Junjie Shi ◽  
...  

The terrain of Central Asia is complex and rugged over mountains. Consequently, wind speed is overestimated over mountains and plains when using the Weather Research Forecast (WRF) model in winter. To solve this problem, three different simulations (named as control simulation (CRTL), gravity waves (GWD), and flow-blocking drag (FBD), respectively) were designed to investigate the impact of sub-grid orography (gravity waves and flow-blocking drag) on wind forecasts. The results illustrated that near-surface wind-speed overestimations were alleviated when sub-grid orographic drag was used in GWD, though the upper-level wind fields at 500 hPa were excessively reduced compared to CRTL. Thus, we propose eliminating the gravity wave breaking at the upper level to improve upper-level wind underestimations and surface wind speeds at the same time. The sub-grid orographic drag stress of the vertical profile over mountains was reduced when only the flow-blocking drag was retained in FBD. This alleviated underestimations of the upper-level wind speed and near-surface wind, which both have the same positive effects as the gravity wave and flow-blocking total. The mean bias and root mean squared error reduced by 32.76% and 9.39%, respectively, compared to CRTL. Moreover, the temperature and specific humidity in the lower troposphere were indirectly improved. The results of the study demonstrate that it is better to remove sub-grid orographic gravity wave drag when using the gravity wave drag scheme of the WRF model.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
De Zhang ◽  
Luyuan Chen ◽  
Feimin Zhang ◽  
Juan Tan ◽  
Chenghai Wang

Accurate forecast and simulation of near-surface wind is a great challenge for numerical weather prediction models due to the significant transient and intermittent nature of near-surface wind. Based on the analyses of the impact of assimilating in situ and Advanced Tiros Operational Vertical Sounder (ATOVS) satellite radiance data on the simulation of near-surface wind during a severe wind event, using the new generation mesoscale Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system, the dynamic downscaling of near-surface wind is further investigated by coupling the microscale California Meteorological (CALMET) model with the WRF and its 3DVAR system. Results indicate that assimilating in situ and ATOVS radiance observations strengthens the airflow across the Alataw valley and triggers the downward transport of momentum from the upper atmosphere in the downstream area of the valley in the initial conditions, thus improving near-surface wind simulations. Further investigations indicate that the CALMET model provides more refined microtopographic structures than the WRF model in the vicinity of the wind towers. Although using the CALMET model achieves the best simulation of near-surface wind through dynamic downscaling of the output from the WRF and its 3DVAR assimilation, the simulation improvements of near-surface wind speed are mainly within 1 m s−1. Specifically, the mean improvement proportions of near-surface wind speed are 64.8% for the whole simulation period, 58.7% for the severe wind period, 68.3% for the severe wind decay period, and 75.4% for the weak wind period. The observed near-surface wind directions in the weak wind conditions are better simulated in the coupled model with CALMET downscaling than in the WRF and its 3DVAR system. It is concluded that the simulation improvements of CALMET downscaling are distinct when near-surface winds are weak, and the downscaling effects are mainly manifested in the simulation of near-surface wind directions.


2017 ◽  
Vol 145 (1) ◽  
pp. 335-359 ◽  
Author(s):  
Tao Su ◽  
Guoqing Zhai

Abstract A case study of a convection initiation (CI) event involving a mesoscale gravity wave is presented. This severe convection event occurred in east China on 5 June 2009. High-frequency automatic weather station (AWS) data, visible satellite data, and Doppler radar data were combined to depict the features of the gravity wave and the development of several convection centers. The gravity wave was manifested by a surface pressure dip and surface wind shift propagating westward away from the early convection. The pressure dip propagated at a speed of >30 m s−1, which is comparable with that in previous observational studies of convectively generated gravity waves. A special focus is on the initiation of a deep convection cell in Anhui Province, which resulted in 25 deaths. Surface observations showed two precursors before CI, including a convergence line and wind shift at the eastern end of the convergence line. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to examine the structure of the gravity waves and forecast CI processes. The model reproduced the observed features of the gravity wave and the precursors before CI. Three-dimensional model results showed that CI occurred at the intersection between a convergence line and the gravity wave. The relationships between the wind shift and the pressure drop are consistent with polarization relation in ducted gravity waves. As the updraft of the gravity wave intersected with the convergence line, the low-level updraft strengthened and led to CI. The gravity wave, which had stronger updraft than downdraft, suggested a positive contribution to CI.


2020 ◽  
Vol 12 (6) ◽  
pp. 973
Author(s):  
Wenqing Xu ◽  
Like Ning ◽  
Yong Luo

With the development of the wind power industry in China, accurate simulation of near-surface wind plays an important role in wind-resource assessment. Numerical weather prediction (NWP) models have been widely used to simulate the near-surface wind speed. By combining the Weather Research and Forecast (WRF) model with the Three-dimensional variation (3DVar) data assimilation system, our work applied satellite data assimilation to the wind resource assessment tasks of coastal wind farms in Guangdong, China. We compared the simulation results with wind speed observation data from seven wind observation towers in the Guangdong coastal area, and the results showed that satellite data assimilation with the WRF model can significantly reduce the root-mean-square error (RMSE) and improve the index of agreement (IA) and correlation coefficient (R). In different months and at different height layers (10, 50, and 70 m), the Root-Mean-Square Error (RMSE) can be reduced by a range of 0–0.8 m/s from 2.5–4 m/s of the original results, the IA can be increased by a range of 0–0.2 from 0.5–0.8 of the original results, and the R can be increased by a range of 0–0.3 from 0.2–0.7 of the original results. The results of the wind speed Weibull distribution show that, after data assimilation was used, the WRF model was able to simulate the distribution of wind speed more accurately. Based on the numerical simulation, our work proposes a combined wind resource evaluation approach of numerical modeling and data assimilation, which will benefit the wind power assessment of wind farms.


2018 ◽  
Vol 9 (2) ◽  
pp. 647-661 ◽  
Author(s):  
Petr Šácha ◽  
Jiri Miksovsky ◽  
Petr Pisoft

Abstract. Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño–Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.


2020 ◽  
Vol 35 (3) ◽  
pp. 891-919 ◽  
Author(s):  
Ricardo Fonseca ◽  
Marouane Temimi ◽  
Mohan Satyanarayana Thota ◽  
Narendra Reddy Nelli ◽  
Michael John Weston ◽  
...  

Abstract The Weather Research and Forecasting (WRF) Model and the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) are forced with the Global Forecast System (GFS) data and run over the United Arab Emirates (UAE) for two 4-day periods: one in the cold season (16–18 December 2017) and another in the warm season (13–15 April 2018). The models’ performance is evaluated against four observational datasets: weather station observations, eddy-covariance flux measurements at Al Ain, microwave radiometer–derived temperature profile, and twice-daily radiosonde measurements at Abu Dhabi. An overestimation of the daily mean air temperature by 1°–3°C is noticed for both models and periods. This warm bias is attributed to the reduced cloud cover and resulting increased surface downward shortwave radiation flux. A comparison with the eddy-covariance data suggested that both models also underestimate the observed albedo. However, when the models predict heavier amounts of precipitation, they tend to be colder than observations, typically by 2°–3°C. NICAM and WRF overpredict the strength of the near-surface wind speed at all weather stations by roughly 1–3 m s−1, which has been attributed to a poor representation of its subgrid-scale fluctuations and surface drag parameterization. WRF tends to be wetter and NICAM drier than the station observations, possibly because of differences in the cloud microphysics schemes. While the performance of both models for the near-surface fields is comparable, NICAM outperforms WRF in the simulation of vertical profiles of temperature, relative humidity, and wind speed, being able to partially correct some of the biases in the GFS data.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2012 ◽  
Vol 58 (209) ◽  
pp. 529-539 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractDuring the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.


2021 ◽  
Vol 21 (18) ◽  
pp. 13763-13795
Author(s):  
Manfred Ern ◽  
Mohamadou Diallo ◽  
Peter Preusse ◽  
Martin G. Mlynczak ◽  
Michael J. Schwartz ◽  
...  

Abstract. Gravity waves play a significant role in driving the semiannual oscillation (SAO) of the zonal wind in the tropics. However, detailed knowledge of this forcing is missing, and direct estimates from global observations of gravity waves are sparse. For the period 2002–2018, we investigate the SAO in four different reanalyses: ERA-Interim, JRA-55, ERA-5, and MERRA-2. Comparison with the SPARC zonal wind climatology and quasi-geostrophic winds derived from Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite observations show that the reanalyses reproduce some basic features of the SAO. However, there are also large differences, depending on the model setup. Particularly, MERRA-2 seems to benefit from dedicated tuning of the gravity wave drag parameterization and assimilation of MLS observations. To study the interaction of gravity waves with the background wind, absolute values of gravity wave momentum fluxes and a proxy for absolute gravity wave drag derived from SABER satellite observations are compared with different wind data sets: the SPARC wind climatology; data sets combining ERA-Interim at low altitudes and MLS or SABER quasi-geostrophic winds at high altitudes; and data sets that combine ERA-Interim, SABER quasi-geostrophic winds, and direct wind observations by the TIMED Doppler Interferometer (TIDI). In the lower and middle mesosphere the SABER absolute gravity wave drag proxy correlates well with positive vertical gradients of the background wind, indicating that gravity waves contribute mainly to the driving of the SAO eastward wind phases and their downward propagation with time. At altitudes 75–85 km, the SABER absolute gravity wave drag proxy correlates better with absolute values of the background wind, suggesting a more direct forcing of the SAO winds by gravity wave amplitude saturation. Above about 80 km SABER gravity wave drag is mainly governed by tides rather than by the SAO. The reanalyses reproduce some basic features of the SAO gravity wave driving: all reanalyses show stronger gravity wave driving of the SAO eastward phase in the stratopause region. For the higher-top models ERA-5 and MERRA-2, this is also the case in the lower mesosphere. However, all reanalyses are limited by model-inherent damping in the upper model levels, leading to unrealistic features near the model top. Our analysis of the SABER and reanalysis gravity wave drag suggests that the magnitude of SAO gravity wave forcing is often too weak in the free-running general circulation models; therefore, a more realistic representation is needed.


2008 ◽  
Vol 65 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Hyun-Joo Choi ◽  
In-Sun Song

Abstract In the present study, the authors propose a way to include a nonlinear forcing effect on the momentum flux spectrum of convectively forced internal gravity waves using a nondimensional numerical model (NDM) in a two-dimensional framework. In NDM, the nonlinear forcing is represented by nonlinear advection terms multiplied by the nonlinearity factor (NF) of the thermally induced internal gravity waves for a given specified diabatic forcing. It was found that the magnitudes of the waves and resultant momentum flux above the specified forcing decrease with increasing NF due to cancellation between the two forcing mechanisms. Using the momentum flux spectrum obtained by the NDM simulations with various NFs, a scale factor for the momentum flux, normalized by the momentum flux induced by diabatic forcing alone, is formulated as a function of NF. Inclusion of the nonlinear forcing effect into current convective gravity wave drag (GWD) parameterizations, which consider diabatic forcing alone by multiplying the cloud-top momentum flux spectrum by the scale factor, is proposed. An updated convective GWD parameterization using the scale factor is implemented into the NCAR Whole Atmosphere Community Climate Model (WACCM). The 10-yr simulation results, compared with those by the original convective GWD parameterization considering diabatic forcing alone, showed that the magnitude of the zonal-mean cloud-top momentum flux is reduced for wide range of phase speed spectrum by about 10%, except in the middle latitude storm-track regions where the cloud-top momentum flux is amplified. The zonal drag forcing is determined largely by the wave propagation condition under the reduced magnitude of the cloud-top momentum flux, and its magnitude decreases in many regions, but there are several areas of increasing drag forcing, especially in the tropical upper mesosphere and lower thermosphere.


Sign in / Sign up

Export Citation Format

Share Document