scholarly journals Comparative Numerical Study of PM2.5 in Exit-and-Entrance Areas Associated with Transboundary Transport over China, Japan, and Korea

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 469
Author(s):  
Cheol-Hee Kim ◽  
Fan Meng ◽  
Mizuo Kajino ◽  
Jaehyun Lim ◽  
Wei Tang ◽  
...  

We report the results of year-long PM2.5 (particulate matter less than 2.5 µm in diameter) simulations over Northeast Asia for the base year of 2013 under the framework of the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project. LTP is a tripartite project launched by China, Japan, and Korea for cooperative monitoring and modeling of the long-range transport (LRT) of air pollutants. In the modeling aspect in the LTP project, each country’s modeling group employs its own original air quality model and options. The three regional air quality models employed by the modeling groups are WRF-CAMx, NHM-RAQM2, and WRF-CMAQ. PM2.5 concentrations were simulated in remote exit-and-entrance areas associated with the LRT process over China, Japan, and Korea. The results showed apparent bias that remains unexplored due to a series of uncertainties from emission estimates and inherent model limitations. The simulated PM10 levels at seven remote exit-and-entrance sites were underestimated with the normalized mean bias of 0.4 ± 0.2. Among the four chemical components of PM2.5 (SO42−, NO3−, organic carbon (OC), and elemental carbon (EC)), the largest inter-model variability was in OC, with the second largest discrepancy in NO3−. Our simulation results also indicated that under considerable SO42− levels, favorable environments for ammonium nitrate formation were found in exit-and-entrance areas between China and Korea, and gas-aerosol partitioning for semi-volatile species of ammonium nitrate could be fully achieved prior to arrival at the entrance areas. Other chemical characteristics, including NO3−/SO42− and OC/EC ratios, are discussed to diagnose the LRT characteristics of PM2.5 in exit-and-entrance areas associated with transboundary transport over China, Japan, and Korea.

2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Kuo-Cheng Lo ◽  
Chung-Hsuang Hung

Due to the distinct geographical and meteorological conditions of Taiwan, air pollutants concentrations in the ambient air of it may vary with seasons. Accordingly, this study aimed to investigate the formation of high O3concentration in the ambient air of Southern Taiwan during summers. A high O3concentration case occurring between June 28 and July 2, 2013, was modeled and analyzed with WRF-Chem meteorological and air quality model. During the investigated period, a typical western Pacific subtropical high (WPSH) covered most East Asia, including Taiwan and its surrounding areas. The observations showed strong correlations between WPSH invasion and forming high O3concentrations. The dispersion of air pollutants in the ambient air is not sufficient to dilute their concentrations. In the afternoon of June 30, more than 60% of the air quality monitoring stations found O3concentrations exceeding 100 ppb, which were 2~3 times higher than their normal concentrations. Model simulation results verified that the presence of the WPSH hindered the dilution and transportation of air pollutants in ambient air. In addition, the air quality would be getting worse due to the leeward sides caused by the counter clockwise vertex formed in Southwestern Taiwan.


2020 ◽  
Author(s):  
Philipp Schneider ◽  
Nuria Castell ◽  
Paul Hamer ◽  
Sam-Erik Walker ◽  
Alena Bartonova

<p>One of the most promising applications of low-cost sensor systems for air quality is the possibility to deploy them in relatively dense networks and to use this information for mapping urban air quality at unprecedented spatial detail. More and more such dense sensor networks are being set up worldwide, particularly for relatively inexpensive nephelometers that provide PM<sub>2.5</sub> observations with often quite reasonable accuracy. However, air pollutants typically exhibit significant spatial variability in urban areas, so using data from sensor networks alone tends to result in maps with unrealistic spatial patterns, unless the network density is extremely high. One solution is to use the output from an air quality model as an a priori field and as such to use the combined knowledge of both model and sensor network to provide improved maps of urban air quality. Here we present our latest work on combining the observations from low-cost sensor systems with data from urban-scale air quality models, with the goal of providing realistic, high-resolution, and up-to-date maps of urban air quality.</p><p>In previous years we have used a geostatistical approach for mapping air quality (Schneider et al., 2017), exploiting both low-cost sensors and model information. The system has now been upgraded to a data assimilation approach that integrates the observations from a heterogeneous sensor network into an urban-scale air quality model while considering the sensor-specific uncertainties. The approach further ensures that the spatial representativity of each observation is automatically derived as a combination of a model climatology and a function of distance. We demonstrate the methodology using examples from Oslo and other cities in Norway. Initial results indicate that the method is robust and provides realistic spatial patterns of air quality for the main air pollutants that were evaluated, even in areas where only limited observations are available. Conversely, the model output is constrained by the sensor data, thus adding value to both input datasets.</p><p>While several challenging issues remain, modern air quality sensor systems have reached a maturity level at which some of them can provide an intra-sensor consistency and robustness that makes it feasible to use networks of such systems as a data source for mapping urban air quality at high spatial resolution. We present our current approach for mapping urban air quality with the help of low-cost sensor networks and demonstrate both that it can provide realistic results and that the uncertainty of each individual sensor system can be taken into account in a robust and meaningful manner.</p><p> </p><p>Schneider, P., Castell N., Vogt M., Dauge F. R., Lahoz W. A., and Bartonova A., 2017. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment international, 106, 234-247.</p>


Author(s):  
Dung Minh Ho ◽  
Bang Quoc Ho ◽  
Thang Viet Le

Livestock is one of the main activities of the agricultural sector in Tan Thanh district, Ba Ria – Vung Tau province. Beside of pollution sources such as waste water, solid waste, livestock activity in Tan Thanh district, Ba Ria - Vung Tau province in recent years has caused air pollution in the livestock area and surrounding area. This research was carried out to evaluate the process of air pollution dispersion from livestock activities based on applying the TAPM meteorological model and AERMOD air quality model. The results showed that the maximum concentrations of air pollutants from livestock area such as NH3, H2S and CH3SH exceeded the National Technical Regulation on Ambient Air Quality (average hour) in the centre of Tan Thanh district, such as Toc Tien commune, part of Tan Phuoc and Phuoc Hoa communes, is 505 μg/m3; 57.4 μg/m3 and 111 μg/m3, respectively. Phu My district and other suburban communes (Hac Dich, Song Xoai, Chau Pha, Tan Hoa, Tan Hai, My Xuan, etc.) have distribution of lower concentrations of air pollutants. Base on the present results of modeling, the authors have proposed livestock development scenarios to control air pollution from this activity, contributing to environmental protection for Tan Thanh district.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 969 ◽  
Author(s):  
Shuzhan Ren ◽  
Craig Stroud ◽  
Stephane Belair ◽  
Sylvie Leroyer ◽  
Rodrigo Munoz-Alpizar ◽  
...  

The sensitivities of meteorological and chemical predictions to urban effects over four major North American cities are investigated using the high-resolution (2.5-km) Environment and Climate Change Canada’s air quality model with the Town Energy Balance (TEB) scheme. Comparisons between the model simulation results with and without the TEB effect show that urbanization has great impacts on surface heat fluxes, vertical diffusivity, air temperature, humidity, atmospheric boundary layer height, land-lake circulation, air pollutants concentrations and Air Quality Health Index. The impacts have strong diurnal variabilities, and are very different in summer and winter. While the diurnal variations of the impacts share some similarities over each city, the magnitudes can be very different. The underlying mechanisms of the impacts are investigated. The TEB impacts on the predictions of meteorological and air pollutants over Toronto are evaluated against ground-based observations. The results show that the TEB scheme leads to a great improvement in biases and root-mean-square deviations in temperature and humidity predictions in downtown, uptown and suburban areas in the early morning and nighttime. The scheme also leads to a big improvement of predictions of NOx, PM2.5 and ground-level ozone in the downtown, uptown and industrial areas in the early morning and nighttime.


Sign in / Sign up

Export Citation Format

Share Document