scholarly journals Forming High Ozone Concentration in the Ambient Air of Southern Taiwan under the Effects of Western Pacific Subtropical High

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Kuo-Cheng Lo ◽  
Chung-Hsuang Hung

Due to the distinct geographical and meteorological conditions of Taiwan, air pollutants concentrations in the ambient air of it may vary with seasons. Accordingly, this study aimed to investigate the formation of high O3concentration in the ambient air of Southern Taiwan during summers. A high O3concentration case occurring between June 28 and July 2, 2013, was modeled and analyzed with WRF-Chem meteorological and air quality model. During the investigated period, a typical western Pacific subtropical high (WPSH) covered most East Asia, including Taiwan and its surrounding areas. The observations showed strong correlations between WPSH invasion and forming high O3concentrations. The dispersion of air pollutants in the ambient air is not sufficient to dilute their concentrations. In the afternoon of June 30, more than 60% of the air quality monitoring stations found O3concentrations exceeding 100 ppb, which were 2~3 times higher than their normal concentrations. Model simulation results verified that the presence of the WPSH hindered the dilution and transportation of air pollutants in ambient air. In addition, the air quality would be getting worse due to the leeward sides caused by the counter clockwise vertex formed in Southwestern Taiwan.

Author(s):  
Dung Minh Ho ◽  
Bang Quoc Ho ◽  
Thang Viet Le

Livestock is one of the main activities of the agricultural sector in Tan Thanh district, Ba Ria – Vung Tau province. Beside of pollution sources such as waste water, solid waste, livestock activity in Tan Thanh district, Ba Ria - Vung Tau province in recent years has caused air pollution in the livestock area and surrounding area. This research was carried out to evaluate the process of air pollution dispersion from livestock activities based on applying the TAPM meteorological model and AERMOD air quality model. The results showed that the maximum concentrations of air pollutants from livestock area such as NH3, H2S and CH3SH exceeded the National Technical Regulation on Ambient Air Quality (average hour) in the centre of Tan Thanh district, such as Toc Tien commune, part of Tan Phuoc and Phuoc Hoa communes, is 505 μg/m3; 57.4 μg/m3 and 111 μg/m3, respectively. Phu My district and other suburban communes (Hac Dich, Song Xoai, Chau Pha, Tan Hoa, Tan Hai, My Xuan, etc.) have distribution of lower concentrations of air pollutants. Base on the present results of modeling, the authors have proposed livestock development scenarios to control air pollution from this activity, contributing to environmental protection for Tan Thanh district.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Chung-Hsuang Hung ◽  
Kuo-Cheng Lo

This study aimed to use a newly developed weather and air quality model, WRF-Chem, to simulate and analyze formation of high-concentrated ozone (O3) in the ambient air of southwestern Taiwan before the invasion of tropical typhoons. Two typical typhoons, Nanmadol and Usagi that occurred in 2011 and 2013, respectively, were simulated in this study. The O3concentration variation patterns in the ambient air of both offshore and inland parts of southwestern Taiwan were collected and analyzed. The results indicated that the high O3concentration observed in southwestern Taiwan before typhoon arrived was mainly caused by the western Pacific subtropical high (WPSH) shrouding it. On the other hand, the latter increase in ambient O3concentration about 1 to 2 days before issuing sea warning was mainly due to both contributions of weakening WPSH and intensifying leeward side effects. For both cases, atmospheric subsidence occurred to result in low ambient air quality. The invasion of typhoons made ambient O3concentration enhanced up to 2-3-fold compared to its normal concentration in summer. Based on the simulated O3concentration variation results in this study, it is demonstrated that the space-fading patterns of O3before typhoon arrives also can be used as references for predicting typhoon moving tracks 1.0 to 2.0 days before landfall of typhoons.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 969 ◽  
Author(s):  
Shuzhan Ren ◽  
Craig Stroud ◽  
Stephane Belair ◽  
Sylvie Leroyer ◽  
Rodrigo Munoz-Alpizar ◽  
...  

The sensitivities of meteorological and chemical predictions to urban effects over four major North American cities are investigated using the high-resolution (2.5-km) Environment and Climate Change Canada’s air quality model with the Town Energy Balance (TEB) scheme. Comparisons between the model simulation results with and without the TEB effect show that urbanization has great impacts on surface heat fluxes, vertical diffusivity, air temperature, humidity, atmospheric boundary layer height, land-lake circulation, air pollutants concentrations and Air Quality Health Index. The impacts have strong diurnal variabilities, and are very different in summer and winter. While the diurnal variations of the impacts share some similarities over each city, the magnitudes can be very different. The underlying mechanisms of the impacts are investigated. The TEB impacts on the predictions of meteorological and air pollutants over Toronto are evaluated against ground-based observations. The results show that the TEB scheme leads to a great improvement in biases and root-mean-square deviations in temperature and humidity predictions in downtown, uptown and suburban areas in the early morning and nighttime. The scheme also leads to a big improvement of predictions of NOx, PM2.5 and ground-level ozone in the downtown, uptown and industrial areas in the early morning and nighttime.


2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2013 ◽  
Vol 726-731 ◽  
pp. 2324-2332
Author(s):  
Wen Yong Wang ◽  
Xiao Juan Ma

Based on the detailed survey on the source and volume of NOx emission over Chengdu Economic Circle, the third-generation air quality model CMAQ is adopted for simulating the density of NOx in the air over Chengdu Economic Circle. The result shows that the hourly concentration, daily mean concentration and annual mean concentration of NOx in air exceed the standard data, and the affected areas respectively account for 0.2%, 0.18% and 0.12% of the total area of the economic circle. Meanwhile, in accordance with the simulation calculation, The NOX emission of the vehicle exhaust, the thermal power plant and the cement plant are the major NOX concentration contribution sources in air, contribution rate is amounting to 39.13%, 21.41% and 15.34% respectively. Thus, three main measures to reduce the emission of NOx of Chengdu Economic Circle are proposed as follows: firstly, strengthen the management of vehicle and reduce the emission of NOx by the vehicle; secondly, manage the NOx of the industrial enterprise; flue gas denitrification equipment must be constructed in the thermal power plant and cement manufacturing enterprise, and the comprehensive denitration efficiency of the thermal power plant should be not less than 70% and the comprehensive denitration efficiency of the cement plant should not be less than 60%; thirdly, joint prevention and control measures should be implemented between the cities, so as to reduce the transport of NOx. With the application of the above measures, the emission reductions of NOx can be reduced to 55% of the existing volume, and the concentration of NOx in the air can meet with the Class II of national ambient air quality Standard.


Author(s):  
Muhammad Ibrahim

Pollution due to air quality deterioration is directly or indirectly connected to the phenomenon of biogeochemistry (i.e the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that influence the composition of the natural environment) which in turn links to the human health. Human health and well-being, along with the well-being of animals, plants, and agricultural products, are solely dependent upon the quality of air we inhale. In response to the emission control threshold levels, prediction of how changes in emission levels could affect ambient air quality has been documented. The use of photochemical air quality models is becoming widely acceptable by various global regulatory agencies for the purpose of regulatory analyses and for the attainment exhibition by evaluating and assessing the effectiveness of control strategies. This review work tries to figure out the two most important and uncommon models namely; Comprehensive Air Quality Model with Extensions (CAMx) and Community Multiscale Air Quality (CMAQ) Modeling System. These modeling systems are used to predict, characterize, determine and simulate the photochemical air quality conditions. This paper gives a substantial detailed information of findings from related multidimensional studies carried out long ago and recently on photochemical smog analyses. Photochemical smog; causes and impacts on both the environment and living-being health were succinctly spelt out. Ozone formation and its different precursors; atmospheric aerosols; emission of biogenics as well as Ozone modeling phases were also discussed. The researcher still talks about the model formulations such as Zhang Model formulation; application and history of CMAQ and CAMx models respectively.


2020 ◽  
Author(s):  
Philipp Schneider ◽  
Nuria Castell ◽  
Paul Hamer ◽  
Sam-Erik Walker ◽  
Alena Bartonova

<p>One of the most promising applications of low-cost sensor systems for air quality is the possibility to deploy them in relatively dense networks and to use this information for mapping urban air quality at unprecedented spatial detail. More and more such dense sensor networks are being set up worldwide, particularly for relatively inexpensive nephelometers that provide PM<sub>2.5</sub> observations with often quite reasonable accuracy. However, air pollutants typically exhibit significant spatial variability in urban areas, so using data from sensor networks alone tends to result in maps with unrealistic spatial patterns, unless the network density is extremely high. One solution is to use the output from an air quality model as an a priori field and as such to use the combined knowledge of both model and sensor network to provide improved maps of urban air quality. Here we present our latest work on combining the observations from low-cost sensor systems with data from urban-scale air quality models, with the goal of providing realistic, high-resolution, and up-to-date maps of urban air quality.</p><p>In previous years we have used a geostatistical approach for mapping air quality (Schneider et al., 2017), exploiting both low-cost sensors and model information. The system has now been upgraded to a data assimilation approach that integrates the observations from a heterogeneous sensor network into an urban-scale air quality model while considering the sensor-specific uncertainties. The approach further ensures that the spatial representativity of each observation is automatically derived as a combination of a model climatology and a function of distance. We demonstrate the methodology using examples from Oslo and other cities in Norway. Initial results indicate that the method is robust and provides realistic spatial patterns of air quality for the main air pollutants that were evaluated, even in areas where only limited observations are available. Conversely, the model output is constrained by the sensor data, thus adding value to both input datasets.</p><p>While several challenging issues remain, modern air quality sensor systems have reached a maturity level at which some of them can provide an intra-sensor consistency and robustness that makes it feasible to use networks of such systems as a data source for mapping urban air quality at high spatial resolution. We present our current approach for mapping urban air quality with the help of low-cost sensor networks and demonstrate both that it can provide realistic results and that the uncertainty of each individual sensor system can be taken into account in a robust and meaningful manner.</p><p> </p><p>Schneider, P., Castell N., Vogt M., Dauge F. R., Lahoz W. A., and Bartonova A., 2017. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment international, 106, 234-247.</p>


Sign in / Sign up

Export Citation Format

Share Document