scholarly journals The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1042
Author(s):  
Maria Kezoudi ◽  
Christos Keleshis ◽  
Panayiota Antoniou ◽  
George Biskos ◽  
Murat Bronz ◽  
...  

The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks.

Author(s):  
Alison Flatau ◽  
Usha Varshney ◽  
Peter Chang

Advances in MEMs, wireless, information technology and other enabling technologies are leading to new sensor system functionality and access to more accurate data and information than heretofore realizable. These advances are crucial for realizing the full potential of the on-going transition from data-poor to data-rich and information-poor to information-rich science and engineering practices. With decreases in size and cost of sensors resulting from advances in microsystem technologies, ubiquitous sensing is becoming both physically realizable and economically feasible. New developments in sensed-information technologies offer the promise of novel insights and advances in areas that have previously lacked the technology base for acquiring high resolution and highly specific assessments of state (biologic, chemical, physical, optical, etc.). Increased research and education are needed in new technologies addressing research issues relating to new hardware and software for efficient acquisition of data and information, and in new decision and control theory as tools for managing and using available data and information. New sensor system functionality will be realized through countless different design concepts. This paper examines some of the needs, opportunities, and trends for research and education in the area of sensed-information and sensor systems research.


2014 ◽  
Vol 14 (17) ◽  
pp. 9249-9258 ◽  
Author(s):  
S. O'Doherty ◽  
M. Rigby ◽  
J. Mühle ◽  
D. J. Ivy ◽  
B. R. Miller ◽  
...  

Abstract. High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 ± 0.04 and 0.7 ± 0.02 mW m−2 in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1σ) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr−1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr−1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr−1 of HFC-143a and 21 ± 11 Gg yr−1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 ± 5% yr−1 for HFC-143a and 14 ± 11% yr−1 for HFC-32.


2014 ◽  
Vol 14 (5) ◽  
pp. 6471-6500 ◽  
Author(s):  
S. O'Doherty ◽  
M. Rigby ◽  
J. Mühle ◽  
D. J. Ivy ◽  
B. R. Miller ◽  
...  

Abstract. High frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant HFCs respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 and 0.7 mW m2 in 2012, respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1-sigma) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr−1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr−1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr−1 of HFC-143a and 21 ± 11 Gg yr−1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing 7 ± 5% yr−1 for HFC-143a and 14 ± 11% yr−1 for HFC-32.


2021 ◽  
Author(s):  
Matthew Christensen ◽  
Andrew Gettelman ◽  
Jan Cermak ◽  
Guy Dagan ◽  
Michael Diamond ◽  
...  

Abstract. Aerosol-cloud interactions (ACI) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The non-linearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can also be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatio-temporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite data sets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Opportunistic experiments have significantly improved process level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus, demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.


2012 ◽  
Vol 12 (9) ◽  
pp. 4313-4325 ◽  
Author(s):  
D. J. Ivy ◽  
T. Arnold ◽  
C. M. Harth ◽  
L. P. Steele ◽  
J. Mühle ◽  
...  

Abstract. Atmospheric observations and trends are presented for the high molecular weight perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14), hexadecafluoroheptane (C7F16) and octadecafluorooctane (C8F18). Their atmospheric histories are based on measurements of 36 Northern Hemisphere and 46 Southern Hemisphere archived air samples collected between 1973 to 2011 using the Advanced Global Atmospheric Gases Experiment (AGAGE) "Medusa" preconcentration gas chromatography-mass spectrometry systems. A new calibration scale was prepared for each PFC, with estimated accuracies of 6.8% for C4F10, 7.8% for C5F12, 4.0% for C6F14, 6.6% for C7F16 and 7.9% for C8F18. Based on our observations the 2011 globally averaged dry air mole fractions of these heavy PFCs are: 0.17 parts-per-trillion (ppt, i.e., parts per 1012) for C4F10, 0.12 ppt for C5F12, 0.27 ppt for C6F14, 0.12 ppt for C7F16 and 0.09 ppt for C8F18. These atmospheric mole fractions combine to contribute to a global average radiative forcing of 0.35 mW m−2, which is 6% of the total anthropogenic PFC radiative forcing (Montzka and Reimann, 2011; Oram et al., 2012). The growth rates of the heavy perfluorocarbons were largest in the late 1990s peaking at 6.2 parts per quadrillion (ppq, i.e., parts per 1015) per year (yr) for C4F10, at 5.0 ppq yr−1 for C5F12 and 16.6 ppq yr−1 for C6F14 and in the early 1990s for C7F16 at 4.7 ppq yr−1 and in the mid 1990s for C8F18 at 4.8 ppq yr−1. The 2011 globally averaged mean atmospheric growth rates of these PFCs are subsequently lower at 2.2 ppq yr−1 for C4F10, 1.4 ppq yr−1 for C5F12, 5.0 ppq yr−1 for C6F14, 3.4 ppq yr−1 for C7F16 and 0.9 ppq yr−1 for C8F18. The more recent slowdown in the growth rates suggests that emissions are declining as compared to the 1980s and 1990s.


Sign in / Sign up

Export Citation Format

Share Document