scholarly journals A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1177
Author(s):  
Xugang Peng ◽  
Lei Wang ◽  
Minmin Wu ◽  
Qiuying Gan

Tropical cloud clusters (TCCs) are embryos of tropical cyclones (TCs) and may have the potential to develop into TCs. The genesis productivity (GP) of TCCs is used to quantify the proportion of TCCs that can evolve into TCs. Recent studies have revealed a decrease in GP of western North Pacific (WNP) TCCs during the extended boreal summer (July–October) since 1998. Here, we show that the changing tendencies in GP of WNP TCCs have obvious seasonality. Although most months could see recent decreases in GP of WNP TCCs, with October experiencing the strongest decreasing trend, May is the only month with a significant recent increasing trend. The opposite changing tendencies in May and October could be attributed to different changes in low-level atmospheric circulation anomalies triggered by different sea surface temperature (SST) configurations across the tropical oceans. In May, stronger SST warming in the tropical western Pacific could prompt increased anomalous westerlies associated with anomalous cyclonic circulation, accompanied by the weakening of the WNP subtropical high and the strengthening of the WNP monsoon. Such changes in background atmospheric circulations could favor the enhancement of atmospheric eddy kinetic energy and barotropic energy conversions, resulting in a recent intensified GP of WNP TCCs in May. In October, stronger SST warming in the tropical Atlantic and Indian Oceans contributed to anomalous easterlies over the tropical WNP associated with anomalous anticyclonic circulation, giving rise to the suppressed atmospheric eddy kinetic energy and recent weakened GP of WNP TCCs. These results highlight the seasonality in recent changing tendencies in the GP of WNP TCCs and associated large-scale atmospheric-oceanic conditions.

2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


2010 ◽  
Vol 138 (7) ◽  
pp. 2546-2569 ◽  
Author(s):  
Jason M. Cordeira ◽  
Lance F. Bosart

Abstract The “Perfect Storms” (PSs) were a series of three high-impact extratropical cyclones (ECs) that impacted North America and the North Atlantic in late October and early November 1991. The PSs included the Perfect Storm in the northwest Atlantic, a second EC over the North Atlantic that developed from the interaction of the PS with Hurricane Grace, and a third EC over North America commonly known as the “1991 Halloween Blizzard.” The PSs greatly impacted the North Atlantic and North America with large waves, coastal flooding, heavy snow, and accumulating ice, and they also provided an opportunity to investigate the physical processes that contributed to a downstream baroclinic development (DBD) episode across North America that culminated in the ECs. Downstream baroclinic development resulted from an amplification of the large-scale flow over the North Pacific that was influenced by anomalous tropical convection, the recurvature and extratropical transition of western North Pacific Tropical Cyclones Orchid, Pat, and Ruth, and the subsequent evolution of the extratropical flow. The progression of DBD occurred following the development of a negative PNA regime and the generation of baroclinic instability over North America associated with equatorward-displaced potential vorticity anomalies and poleward-displaced corridors of high moisture content. An analysis of the eddy kinetic energy tendency equation demonstrated that the resulting baroclinic conversion of eddy available potential energy into eddy kinetic energy during the cyclogenesis process facilitated the progression of DBD across North America and the subsequent development of the ECs.


2018 ◽  
Vol 146 (5) ◽  
pp. 1283-1301 ◽  
Author(s):  
Jacopo Riboldi ◽  
Matthias Röthlisberger ◽  
Christian M. Grams

Abstract The interaction of recurving tropical cyclones (TCs) with midlatitude Rossby waves during extratropical transition (ET) can significantly alter the midlatitude flow configuration. This study provides a climatological investigation of Rossby wave initiation (RWI) by transitioning TCs in the specific configuration of an initially zonal midlatitude waveguide and elucidates physical processes governing ab initio flow amplification during ET. Recurving TCs interacting with a zonally oriented waveguide in the western North Pacific (WNP) basin from 1979 to 2013 are categorized into cases initiating Rossby waves (TC-RWI) or not (TC-noRWI). Interactions with a zonally oriented waveguide occurred for 22.7% of the recurving TCs, and one-third of these resulted in TC-RWI. In the presence of a TC, the probability of RWI on a zonally oriented waveguide is 3 times larger than in situations without a TC. The occurrence of TC-RWI exhibits a seasonality and is relatively more common during boreal summer than in autumn. We further reveal that a strong preexisting upper-level jet stream, embedded in a deformative large-scale flow pattern, hinders TC-RWI as air from the diabatic outflow of the TC is rapidly advected downstream and does not lead to strong ridge building. In contrast, an enhanced monsoon trough favors TC-RWI as the poleward moisture transport strengthens diabatic outflow and leads to strong ridge building during ET. Thus, we conclude that TC-related ab initio flow amplification over the WNP is governed by characteristics of the large-scale flow more so than by characteristics of the recurving TC.


2018 ◽  
Vol 31 (22) ◽  
pp. 9175-9191 ◽  
Author(s):  
Haikun Zhao ◽  
Shaohua Chen ◽  
Philip J. Klotzbach ◽  
G. B. Raga

Tropical cloud clusters (TCCs) are traditionally viewed as precursors of tropical cyclone (TC) genesis. Most studies have focused on the impact of the extended boreal summer intraseasonal oscillation (ISO) on TC activity over the western North Pacific (WNP), while the modulation of the ISO on WNP TCC genesis productivity (TCCGP), that is, the ratio of TC to TCC counts, has been investigated much less frequently. This study suggests that the extended boreal summer ISO modulates WNP TCCGP, with higher (lower) TCCGP during convectively active (inactive) ISO phases. Changes in TCCGP are found to be closely associated with changes of large-scale environmental factors. During the convectively active ISO phase, significantly increased TCCGP is associated with strengthened low-level cyclonic circulation anomalies and increased midlevel relative humidity anomalies over the WNP basin. The genesis potential index (GPI) contains several large-scale environmental variables demonstrated to relate to TCs and TCCs. The GPI can adequately depict the ISO modulation of WNP TCCGP through its alterations of large-scale parameters. Low-level vorticity makes the largest contribution to the change of TCCGP with a secondary contribution from midlevel relative humidity. Interestingly, the nonlinear GPI terms make comparable contributions, which can be partly explained by the synoptic-scale wave activity associated with the ISO mode. Stronger (weaker) 3–8-day synoptic-scale wave train intensity and increased (decreased) low-level eddy kinetic energy are found to be associated with the enhanced (weakened) monsoon circulation over the WNP basin during convectively active (inactive) ISO phases.


2021 ◽  
Vol 34 (2) ◽  
pp. 635-642
Author(s):  
Minhee Chang ◽  
Doo-Sun R. Park ◽  
Chang-Hoi Ho

AbstractAn abrupt decrease in annual tropical cyclone genesis frequency (TCGF), which is statistically significant only from October to December (OND), has been noticed over the western North Pacific Ocean. However, the seasonal inhomogeneity of interdecadal changes in TCGF between OND and the other seasons (from January to September) and the associated mechanisms are not clearly documented. This study examines and compares the different interdecadal changes in OND and in January–September from 1979 to 2018. According to our analysis, the TCGF decrease in OND (2.2) accounts for 79% of the total decrease (2.8) in annual TCGF after 1998, whereas the TCGF in January to September remains unchanged. The key differences in large-scale environment are found from the extension of equatorial easterly wind anomalies and attendant anticyclone anomalies in the subtropics. Under similar sea surface temperature (SST) warming pattern in the tropical Indo-Pacific region (i.e., the La Niña–like SST warming), tropical precipitation is significantly enhanced over the area where its seasonal peak occurs: the tropical Indian Ocean in OND and the tropical western Pacific in January–September. Thus, the equatorial easterly wind anomalies extend westward to 110°E in OND and to 145°E in January–September. Different extension of easterly wind anomalies results in different expansion of attendant large-scale anticyclone anomaly over the subtropical western Pacific, which dominates the entire main development region in OND but not in January–September. To summarize, the different extensions of easterly wind anomalies under similar La Niña–like SST warming are responsible for the seasonal inhomogeneity of interdecadal changes in TCGF.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


2021 ◽  
Author(s):  
Yuqi Wang ◽  
Renguang Wu

AbstractSurface latent heat flux (LHF) is an important component in the heat exchange between the ocean and atmosphere over the tropical western North Pacific (WNP). The present study investigates the factors of seasonal mean LHF variations in boreal summer over the tropical WNP. Seasonal mean LHF is separated into two parts that are associated with low-frequency (> 90-day) and high-frequency (≤ 90-day) atmospheric variability, respectively. It is shown that low-frequency LHF variations are attributed to low-frequency surface wind and sea-air humidity difference, whereas high-frequency LHF variations are associated with both low-frequency surface wind speed and high-frequency wind intensity. A series of conceptual cases are constructed using different combinations of low- and high-frequency winds to inspect the respective effects of low-frequency wind and high-frequency wind amplitude to seasonal mean LHF variations. It is illustrated that high-frequency wind fluctuations contribute to seasonal high-frequency LHF only when their intensity exceeds the low-frequency wind speed under which there is seasonal accumulation of high-frequency LHF. When high-frequency wind intensity is smaller than the low-frequency wind speed, seasonal mean high-frequency LHF is negligible. Total seasonal mean LHF anomalies depend on relative contributions of low- and high-frequency atmospheric variations and have weak interannual variance over the tropical WNP due to cancellation of low- and high-frequency LHF anomalies.


Sign in / Sign up

Export Citation Format

Share Document