scholarly journals Crop Residue Burning in Northeast China and Its Impact on PM2.5 Concentrations in South Korea

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1212
Author(s):  
Jin-Ju Lee ◽  
Jae-Bum Lee ◽  
Okgil Kim ◽  
Gookyoung Heo ◽  
Hankyung Lee ◽  
...  

The impact of crop residue burning in northeastern China on South Korean PM2.5 concentrations was assessed via weather conditions, air quality modeling (AQM), and PM2.5 composition data during two cases exceeding 35 µg·m−3 in November 2015. PM2.5 concentration simulations of Case 1 differed from observations by 3.7–17.6 µg·m−3, overestimating the levels by 6–36%; however, Case 2 varied by 20.0–59.8 µg·m−3 from observations, with a 53–91% underestimation. Case 1 was generally well simulated, whereas the Case 2 simulation failed because the emissions of crop residue burning in northeastern China, as confirmed through satellite analysis (MODIS fires and thermal anomalies) and previous research, were not considered. The portion of organic/elemental carbon ratio during Case 2 was 1.6–2.3 times higher than that of Case 1. These results suggest that it is necessary to consider the effects of crop residue burning in northeast China to establish countermeasures to improve air quality and air quality forecasting in South Korea.

2021 ◽  
Vol 13 (19) ◽  
pp. 3880
Author(s):  
Yu Fu ◽  
Hao Gao ◽  
Hong Liao ◽  
Xiangjun Tian

Large uncertainty exists in the estimations of greenhouse gases and aerosol emissions from crop residue burning, which could be a key source of uncertainty in quantifying the impact of agricultural fire on regional air quality. In this study, we investigated the crop residue burning emissions and their uncertainty in North China Plain (NCP) using three widely used methods, including statistical-based, burned area-based, and fire radiative power-based methods. The impacts of biomass burning emissions on atmospheric carbon dioxide (CO2) were also examined by using a global chemical transport model (GEOS-Chem) simulation. The crop residue burning emissions were found to be high in June and followed by October, which is the harvest times for the main crops in NCP. The estimates of CO2 emission from crop residue burning exhibits large interannual variation from 2003 to 2019, with rapid growth from 2003 to 2012 and a remarkable decrease from 2013 to 2019, indicating the effects of air quality control plans in recent years. Through Monte Carlo simulation, the uncertainty of each estimation was quantified, ranging from 20% to 70% for CO2 emissions at the regional level. Concerning spatial uncertainty, it was found that the crop residue burning emissions were highly uncertain in small agricultural fire areas with the maximum changes of up to 140%. While in the areas with large agricultural fire, i.e., southern parts of NCP, the coefficient of variation mostly ranged from 30% to 100% at the gridded level. The changes in biomass burning emissions may lead to a change of surface CO2 concentration during the harvest times in NCP by more than 1.0 ppmv. The results of this study highlighted the significance of quantifying the uncertainty of biomass burning emissions in a modeling study, as the variations of crop residue burning emissions could affect the emission-driven increases in CO2 and air pollutants during summertime pollution events by a substantial fraction in this region.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e06973
Author(s):  
Pallavi Saxena ◽  
Saurabh Sonwani ◽  
Ananya Srivastava ◽  
Madhavi Jain ◽  
Anju Srivastava ◽  
...  

2020 ◽  
Vol 54 (8) ◽  
pp. 4790-4799 ◽  
Author(s):  
Santosh H. Kulkarni ◽  
Sachin D. Ghude ◽  
Chinmay Jena ◽  
Rama K. Karumuri ◽  
Baerbel Sinha ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 1558-1572 ◽  
Author(s):  
Yike Zhou ◽  
Zhiwei Han ◽  
Ruiting Liu ◽  
Bin Zhu ◽  
Jiawei Li ◽  
...  

2019 ◽  
Vol 205 ◽  
pp. 78-89 ◽  
Author(s):  
Yansong Bao ◽  
Liuhua Zhu ◽  
Qin Guan ◽  
Yuanhong Guan ◽  
Qifeng Lu ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 6015-6036
Author(s):  
Soyoung Ha ◽  
Zhiquan Liu ◽  
Wei Sun ◽  
Yonghee Lee ◽  
Limseok Chang

Abstract. The Korean Geostationary Ocean Color Imager (GOCI) satellite has monitored the East Asian region in high temporal (e.g., hourly) and spatial resolution (e.g., 6 km) every day for the last decade, providing unprecedented information on air pollutants over the upstream region of the Korean Peninsula. In this study, the GOCI aerosol optical depth (AOD), retrieved at the 550 nm wavelength, is assimilated to enhance the quality of the aerosol analysis, thereby making systematic improvements to air quality forecasting over South Korea. For successful data assimilation, GOCI retrievals are carefully investigated and processed based on data characteristics such as temporal and spatial distribution. The preprocessed data are then assimilated in the three-dimensional variational data assimilation (3D-Var) technique for the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). For the Korea–United States Air Quality (KORUS-AQ) period (May 2016), the impact of GOCI AOD on the accuracy of surface PM2.5 prediction is examined by comparing with effects of other observations including Moderate Resolution Imaging Spectroradiometer (MODIS) sensors and surface PM2.5 observations. Consistent with previous studies, the assimilation of surface PM2.5 measurements alone still underestimates surface PM2.5 concentrations in the following forecasts, and the forecast improvements last only for about 6 h. When GOCI AOD retrievals are assimilated with surface PM2.5 observations, however, the negative bias is diminished and forecast skills are improved up to 24 h, with the most significant contributions to the prediction of heavy pollution events over South Korea.


2017 ◽  
Vol 17 (17) ◽  
pp. 10315-10332 ◽  
Author(s):  
Hyun Cheol Kim ◽  
Eunhye Kim ◽  
Changhan Bae ◽  
Jeong Hoon Cho ◽  
Byeong-Uk Kim ◽  
...  

Abstract. The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul metropolitan area (SMA), South Korea, and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emissions sources has not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emissions inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, the Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed  ∼  60 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (fall to spring), reaching  ∼  70 % in March, and making lower contributions in the summer,  ∼  45 % in September. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly consistent. Regional contributions are also found to be sensitive to the choice of emissions inventories.


Sign in / Sign up

Export Citation Format

Share Document