scholarly journals Patterns and Controls of the Latent and Sensible Heat Fluxes in the Brazilian Pampa Biome

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Gisele Cristina Dotto Rubert ◽  
Vanessa de Arruda Souza ◽  
Tamíres Zimmer ◽  
Gustavo Pujol Veeck ◽  
Alecsander Mergen ◽  
...  

Energy and water exchange between the surface and the atmosphere are important drivers to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter (AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux, H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance show a substantial biophysical control in the ET process. The results obtained here allowed a comprehension of the biophysical mechanisms involved in the energy partition process in natural grassland. Therefore, this study can be used as a base for research on land-use changes in this unique ecosystem of the Pampa biome.

2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.


2020 ◽  
Author(s):  
Yaoming Ma

<p>The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People’s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.</p>


2017 ◽  
Vol 34 (9) ◽  
pp. 2103-2112 ◽  
Author(s):  
Temple R. Lee ◽  
Michael Buban ◽  
Edward Dumas ◽  
C. Bruce Baker

AbstractUpscaling point measurements from micrometeorological towers is a challenging task that is important for a variety of applications, for example, in process studies of convection initiation, carbon and energy budget studies, and the improvement of model parameterizations. In the present study, a technique was developed to determine the horizontal variability in sensible heat flux H surrounding micrometeorological towers. The technique was evaluated using 15-min flux observations, as well as measurements of land surface temperature and air temperature obtained from small unmanned aircraft systems (sUAS) conducted during a one-day measurement campaign. The computed H was found to be comparable to the micrometeorological measurements to within 5–10 W m−2. Furthermore, when comparing H computed using this technique with H determined using large-eddy simulations (LES), differences of <10 W m−2 were typically found. Thus, implementing this technique using observations from sUAS will help determine sensible heat flux variability at horizontal spatial scales larger than can be provided from flux tower measurements alone.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2013 ◽  
Vol 13 (9) ◽  
pp. 4645-4666 ◽  
Author(s):  
H. C. Ward ◽  
J. G. Evans ◽  
C. S. B. Grimmond

Abstract. Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.


2006 ◽  
Vol 7 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma ◽  
Wayne R. Rouse

Abstract In this study, the authors have performed the variational computations for surface sensible heat fluxes over a large northern lake using observed wind, temperature gradient, and moisture gradient. In contrast with the conventional (Monin–Obukhov similarity theory) MOST-based flux-gradient method, the variational approach sufficiently utilizes observational meteorological conditions over the lake, where the conventional flux-gradient method performs poorly. Verifications using direct eddy-correlation measurements over Great Slave Lake, the fifth largest lake in North America in terms of surface area, during the open water period of 1999 demonstrate that the variational method yields good agreements between the computed and the measured sensible heat fluxes. It is also demonstrated that the variational method is more accurate than the flux-gradient method in computations of sensible heat flux across the air–water interface.


2009 ◽  
Vol 6 (2) ◽  
pp. 2099-2127 ◽  
Author(s):  
W. J. Timmermans ◽  
Z. Su ◽  
A. Olioso

Abstract. Scintillometry is widely recognized as a potential tool for obtaining spatially aggregated sensible heat fluxes. Although many investigations have been made over contrasting component surfaces, few aggregation schemes consider footprint contributions. In this paper an approach is presented to infer average sensible heat flux over a very heterogeneous landscape by using a large aperture scintillometer. The methodology is demonstrated on simulated data and tested on a time series of measurements obtained during the SPARC2004 experiment in Barrax, Spain. Results show that the two-dimensional footprint approach yields more accurate results of aggregated sensible heat flux than traditional methods.


2010 ◽  
Vol 7 (4) ◽  
pp. 6441-6494 ◽  
Author(s):  
S. Launiainen

Abstract. Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs) and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2–3 mm s−1 in April) restricted transpiration in springtime and caused the sensible heat flux to peak in May–June while evapotranspiration takes over later in July–August when gs is typically 5–7 mm s−1. Hence, during normal years Bowen ratio decreases from 4–6 in April to 0.7–0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D) was relatively constant but the reference value at D=1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m−3 occurred during the period. Below this threshold value transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3–4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought. The inter-annual variability of evapotranspiration could not be linked to any mean climate parameter while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when large proportion of available energy is partitioned into sensible heat.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


Sign in / Sign up

Export Citation Format

Share Document