scholarly journals Change Points Detection and Trend Analysis to Characterize Changes in Meteorologically Normalized Air Pollutant Concentrations

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Roberta Valentina Gagliardi ◽  
Claudio Andenna

Identifying changes in ambient air pollution levels and establishing causation is a research area of strategic importance to assess the effectiveness of air quality interventions. A major challenge in pursuing these objectives is represented by the confounding effects of the meteorological conditions which easily mask or emphasize changes in pollutants concentrations. In this study, a methodological procedure to analyze changes in pollutants concentrations levels after accounting for changes in meteorology over time was developed. The procedure integrated several statistical tools, such as the change points detection and trend analysis that are applied to the pollutants concentrations meteorologically normalized using a machine learning model. Data of air pollutants and meteorological parameters, collected over the period 2013–2019 in a rural area affected by anthropic emissive sources, were used to test the procedure. The joint analysis of the obtained results with the available metadata allowed providing plausible explanations of the observed air pollutants behavior. Consequently, the procedure appears promising in elucidating those changes in the air pollutant levels not easily identifiable in the original data, supplying valuable information to identify an atmospheric response after an intervention or an unplanned event.

Author(s):  
Hyung Kyu Park ◽  
Jung Yeon Shim ◽  
Hye Lim Jung ◽  
Jae Won Shim ◽  
Deok Soo Kim ◽  
...  

Background: Air pollution can be a risk factor for respiratory viral transmission and infection. The COVID-19 outbreak in 2020 may have affected ambient air pollution levels. Therefore, this study aimed to investigate air pollution levels and respiratory virus infection rates before and after the COVID-19 pandemic as well as determine relationships between these factors. Methods: The daily mean temperature and concentrations of air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) in five metropolitan cities in South Korea were collected for the months of February to May from 2015 to 2020. Results of 14 respiratory viruses isolated using polymerase chain reaction in children with upper or lower respiratory tract infections were gathered during the same period. Trends of respiratory virus infection, temperature, and air pollutant level from February to May for six years were evaluated and possible relationships between respiratory virus infections and ambient air pollutant levels were assessed. Results: Most air pollutants exhibited significantly decreasing trends in 2020 compared to the years before COVID-19. There were no differences in temperature. Adenovirus, bocavirus, metapneumovirus, parainfluenza virus 3, and rhinovirus were the most frequently detected viruses from February to May from 2015 to 2019, and infection rates dropped significantly in 2020. The concentration of ambient O3 was associated with rhinovirus infection in hospitalized children (aOR [95% CI], 1.028 [1.002, 1.055]). Conclusions: After the COVID-19 outbreak, ambient air pollution levels and respiratory virus transmission decreased in the pediatric population of South Korea.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Author(s):  
Shang-Shyue Tsai ◽  
Hui-Fen Chiu ◽  
Chun-Yuh Yang

Very few studies have been performed to determine whether there is a relationship between air pollution and increases in hospitalizations for peptic ulcer, and for those that have occurred, their results may not be completely relevant to Taiwan, where the mixture of ambient air pollutants differ. We performed a time-stratified case-crossover study to investigate the possible association between air pollutant levels and hospital admissions for peptic ulcer in Taipei, Taiwan. To do this, we collected air pollution data from Taiwan's Environmental Protection Agency and hospital admissions for peptic ulcer data for the years 2009–2013 from Taiwan's National Health Insurance's research database. We used conditional logistic regression to analyze the possible association between the two, taking temperature and relative humidity into account. Risk was expressed as odds ratios and significance was expressed with 95% confidence intervals. In our single pollutant model, peptic ulcer admissions were significantly associated with all pollutants (PM10, PM2.5, SO2, NO2, CO, and O3) on warm days (>23 °C). On cool days (<23 °C), peptic ulcer admissions were significantly associated with PM10, NO2, and O3. In our two-pollutant models, peptic ulcer admissions were significantly associated NO2 and O3 when combined with each of the other pollutants on warm days, and with PM10, NO2, and O3 on cool days. It was concluded that the likelihood of peptic ulcer hospitalizations in Taipei rose significantly with increases in air pollutants during the study period.


Author(s):  
Mieczysław Szyszkowicz ◽  
Nicholas de Angelis

AbstractTo investigate the acute impact of various air pollutants on various disease groups in the urban area of the city of Toronto, Canada. Statistical models were developed to estimate the relative risk of an emergency department visit associated with ambient air pollution concentration levels. These models were generated for 8 air pollutants (lagged from 0 to 14 days) and for 18 strata (based on sex, age group, and season). Twelve disease groups extracted from the International Classification of Diseases 10th Revision (ICD-10) were used as health classifications in the models. The qualitative results were collected in matrices composed of 18 rows (strata) and 15 columns (lags) for each air pollutant and the 12 health classifications. The matrix cells were assigned a value of 1 if the association was positively statistically significant; otherwise, they were assigned to a value of 0. The constructed matrices were totalized separately for each air pollutant. The resulting matrices show qualitative associations for grouped diseases, air pollutants, and their corresponding lagged concentrations and indicate the frequency of statistically significant positive associations. The results are presented in colour-gradient matrices with the number of associations for every combination of patient strata, pollutant, and lag in corresponding cells. The highest number of the associations was 8 (of 12 possible) obtained for the same day exposure to carbon monoxide, nitrogen dioxide, and days with elevated air quality health index (AQHI) values. For carbon monoxide, the number of the associations decreases with the increasing lags. For this air pollutant, there were almost no associations after 8 days of lag. In the case of nitrogen dioxide, the associations persist even for longer lags. The numerical values obtained from the models are provided for every pollutant. The constructed matrices are a useful tool to analyze the impact of ambient air pollution concentrations on public health.


Author(s):  
Jing Wu ◽  
Yi Ning ◽  
Yongxiang Gao ◽  
Ruiqi Shan ◽  
Bo Wang ◽  
...  

The study aimed to evaluate the relationships between air pollutants and risk of magnetic resonance imaging (MRI)-defined brain infarcts (BI). We used data from routine health examinations of 1,400,503 participants aged ≥18 years who underwent brain MRI scans in 174 cities in 30 provinces in China in 2018. We assessed exposures to particulate matter (PM)2.5, PM10, nitrogen dioxide (NO2), and carbon monoxide (CO) from 2015 to 2017. MRI-defined BI was defined as lesions ≥3 mm in diameter. Air pollutants were associated with a higher risk of MRI-defined BI. The odds ratio (OR) (95% CI) for MRI-defined BI comparing the highest with the lowest tertiles of air pollutant concentrations was 2.00 (1.96–2.03) for PM2.5, 1.68 (1.65–1.71) for PM10, 1.58 (1.55–1.61) for NO2, and 1.57 (1.54–1.60) for CO. Each SD increase in air pollutants was associated with 16–42% increases in the risk of MRI-defined BI. The associations were stronger in the elderly subgroup. This is the largest survey to evaluate the association between air pollution and MRI-defined BI. Our findings indicate that ambient air pollution was significantly associated with a higher risk of MRI-defined BI.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mieczysław Szyszkowicz

Background. Ambient air pollution is a recognized risk factor for multiple health conditions. For some health problems, the impact of air pollution is particularly evident to the patients in a specific age range. Nonsimultaneous exposures to two or more air pollutants may have different relationships with health outcomes than do simultaneous exposures. Methods. Case-crossover technique was used to analyze data on emergency department (ED) visits for ischemic heart disease (IHD), epistaxis, and upper respiratory infection (URI). Conditional logistic regression models were used to estimate odds ratios and their 95% confidence intervals corresponding to an increase in an interquartile range of air pollutant concentrations. Results. The results for IHD show that for older patients (age 60+ years), the association between sulphur dioxide (SO2) exposure and IHD is weak. For ED visits for epistaxis (O3 and SO2 in one model) and URI (O3 and NO2 in one model), air pollutants lagged differently in the common model indicated significant statistical associations but not for common lags. Conclusion. The study findings, based on analyzed examples, suggest that (i) IHD cases in older age are less related to air pollution and (ii) air pollutants may affect some health conditions by a specific sequence of exposure occurrences.


2013 ◽  
Vol 10 (3) ◽  
pp. 453-460

In the present study an assessment of the influence of the ambient air pollution on the incidence of the Childhood Asthma Admissions (CAA) is attempted by using cross spectrum analysis. The medical data concern the hospital registries of the three main Children’s Hospitals of Athens for the 14-year period, 1987-2000. The air pollution data used in this study were mean monthly concentrations of CO, Black Smoke (BS), NOx, SO2, and O3, averaged over all the available stations, for each air pollutant, in the network of the Greek Ministry of the Environment, Physical Planning and Public Works (GMEPPPW) for the aforementioned 14-year period. The performed analysis revealed that a pronounced seasonal variation of asthma exacerbation among Athenian children does exist, rising during the cold damp period in pre-schoolers and peaking around May in the schoolchildren. We found that asthma admissions are associated with ambient air pollution at different frequencies. Asthma exacerbation among the first age group (0-4 years) is strongly depended on winter air pollution whereas older children (5-14 years) appear to be more vulnerable to the exposure of primary air pollutants mainly during late spring. Our findings strengthen the aspect that weather conditions such as sea breeze, mainly happen at the late spring or early summer in association with air pollution episodes could affect childhood asthma exacerbation.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Hannah Kim ◽  
Seung-Ah Choe ◽  
Ok-Jin Kim ◽  
Sun-Young Kim ◽  
Seulgi Kim ◽  
...  

AbstractBackgroundMounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women.MethodsOur study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting.ResultsThe mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents.ConclusionsIn a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility.


2016 ◽  
Vol 310 (11) ◽  
pp. H1423-H1438 ◽  
Author(s):  
Petra Haberzettl ◽  
James P. McCracken ◽  
Aruni Bhatnagar ◽  
Daniel J. Conklin

Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/ .


Author(s):  
Han Cao ◽  
Bingxiao Li ◽  
Tianlun Gu ◽  
Xiaohui Liu ◽  
Kai Meng ◽  
...  

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration–response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37–1.43), 1.35 (1.32–1.37), 1.01 (1.00–1.02), 1.08 (1.07–1.10), 1.28 (1.27–1.29), and 1.26 (1.24–1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97–0.98), 0.96 (0.96–0.97), and 0.94 (0.92–0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration–response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Sign in / Sign up

Export Citation Format

Share Document