scholarly journals Air Pollution Role as Risk Factor of Cardioinhibitory Carotid Hypersensitivity

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Gianfranco Piccirillo ◽  
Federica Moscucci ◽  
Damiano Magrì

Little is known about the impact of air pollution on neuroautonomic system. The authors have investigated possible influence of air pollution and outdoor temperature on the carotid sinus hypersensitivity (CSH), as main cause of neurally mediated syncope in forty-years-old subjects and older. Pollutants’ concentrations and outdoor temperature of days in which 179 subjects with recurrent syncope underwent carotid sinus massage (CSM) were analyzed. Before this manoeuvre, cardiovascular control by short period heart and blood pressure spectral duration of segment between the end of P and R ECG-waves (PeR) were registred; RR variability on the same short period ECG recordings and their spectral coherence were also analyzed. CSH was found in 57 patients (28 with cardioinhibitory response and 29 subjects showed vasodepressor reaction), while 122 subjects had a normal response. CSM performed during high ozone concentrations was associated with slightly higher risk of cardioinhibitory response (odd ratio 1.012, 95% CI 1.001–1.023, p < 0.05), but neither this or other polluting agent nor outdoor temperature seemed to influence autonomic control in basal resting condition. Thus, ozone seemed to influence response to the CSM in CSH patients and it is probably able to facilitate a cardioinhibitory response, perhaps through an increase of nerve acetylcholine release. P→PR coherence could be useful in predicting a sinus cardioinhibitory hypersensitivity in those cases when CSM is contraindicated.

2020 ◽  
Vol 11 ◽  
Author(s):  
Xavier Janvier ◽  
Stéphane Alexandre ◽  
Amine M. Boukerb ◽  
Djouhar Souak ◽  
Olivier Maillot ◽  
...  

The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO2). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis. However, very few is known about the impact of pollutants on skin microbiota. In this study, a new approach was adopted, by considering the alteration of the cutaneous microbiota by air pollutants as an indirect action of the harmful molecules on the skin. The effects of gNO2 on this bacterial skin microbiota was investigated using a device developed to mimic the real-life contact of the gNO2 with bacteria on the surface of the skin. Five strains of human skin commensal bacteria were considered, namely Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, Pseudomonas fluorescens MFP05, and Corynebacterium tuberculostearicum CIP102622. Bacteria were exposed to high concentration of gNO2 (10 or 80 ppm) over a short period of 2 h inside the gas exposure device. The physiological, morphological, and molecular responses of the bacteria after the gas exposure were assessed and compared between the different strains and the two gNO2 concentrations. A highly significant deleterious effect of gNO2 was highlighted, particularly for S. capitis MFP08 and C. tuberculostearicum CIP102622, while S. aureus MFP03 seems to be the less sensitive strain. It appeared that the impact of this nitrosative stress differs according to the bacterial species and the gNO2 concentration. Thus the exposition to gNO2 as an air pollutant could contribute to dysbiosis, which would affect skin homeostasis. The response of the microbiota to the nitrosative stress could be involved in some pathologies such as atopic dermatitis.


Oil Shale ◽  
2011 ◽  
Vol 28 (2) ◽  
pp. 337
Author(s):  
J PAVLENKOVA ◽  
M KAASIK ◽  
E-S KERNER ◽  
A LOOT ◽  
R OTS

2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


Author(s):  
Ilma Robo

The treatment of periodontal diseases, mainly of their origin, with the most common clinical manifestation in form of gingival inflammation, is manifold and powerful, including: mechanical therapy, antibiotic, antiseptic and various approaches to treatment, which are recommended to be used within a short period of time. New therapeutic approaches have been proven as alternative treatment to conventional therapy, or in combination with conventional therapies, to reduce the number of periodontopathic pathogens in gingival sulcus. HBOT has a detrimental effect on periodontal microorganisms, as well as beneficial effects on the healing of periodontal tissue, increasing oxygen pressure in gingival pockets. Our study is aimed at reviewing the current published literature on hyperbaric oxygen therapy and focuses on role of HBOT as a therapeutic measure for the individual with periodontal disease in general and for the impact on the recovery of gingival inflammation. HBOT and periodontal treatment together, reduce up to 99% of the gram-negative anaerobic load of subgingival flora. HBOT, significantly reduces subgingival anaerobic flora. Clinical effects in 2-year follow-up of treated patients are sensitive. Reduction of gingival hemorrhage indexes, depth of peritoneum, plaque index, occurs in cases of combination of HBOT and detraction. Reduced load persists up to 2 months after therapy. The significant increase in connective tissue removal starts at the end of 2nd week, to achieve the maximum in week 3-6 of application. HBOT used for re-implantation, stimulates the healing of periodontal membrane, pulp, prevents root resorption, healing of periodontal lining tissues. HBOT, significantly reduces the hemorrhage index with 1.2 value difference, 0.7mm probe depth, reduces gingival fluid by 2. HGH exposure is increased by gingival blood flow, with a difference of 2 in measured value. The therapeutic effects of HBOT in the value of the evaluation index can be saved up to 1-year post treatment.


Author(s):  
Hong Chen ◽  
Yang Xu

The impact of environmental regulation has been an important topic. Based on the Chinese Custom Database and China City Statistical Yearbook, this paper investigates the effect of environmental regulation on export values and explores potential mechanisms and heterogeneous effects. Taking advantage of China’s first comprehensive air pollution prevention and control plan, the Air Pollution Control in Key Zones policy, as a quasi-natural experiment, we employ the difference-in-differences method to examine the causal relationship between environmental regulation and exports. We find the statistically significant and negative effect of environmental regulation on exports at the city level. Moreover, we find that the potential mechanism is the change in export values caused by firm entry and exit, especially by exiters, rather than the change in the number of exporting firms in the city caused by firm entry and exit. In addition, we find the heterogeneous effects of environmental regulation based on the differences of environmental policy across cities and the Broad Economic Categories classification.


Sign in / Sign up

Export Citation Format

Share Document