scholarly journals Deleterious Effects of an Air Pollutant (NO2) on a Selection of Commensal Skin Bacterial Strains, Potential Contributor to Dysbiosis?

2020 ◽  
Vol 11 ◽  
Author(s):  
Xavier Janvier ◽  
Stéphane Alexandre ◽  
Amine M. Boukerb ◽  
Djouhar Souak ◽  
Olivier Maillot ◽  
...  

The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO2). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis. However, very few is known about the impact of pollutants on skin microbiota. In this study, a new approach was adopted, by considering the alteration of the cutaneous microbiota by air pollutants as an indirect action of the harmful molecules on the skin. The effects of gNO2 on this bacterial skin microbiota was investigated using a device developed to mimic the real-life contact of the gNO2 with bacteria on the surface of the skin. Five strains of human skin commensal bacteria were considered, namely Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, Pseudomonas fluorescens MFP05, and Corynebacterium tuberculostearicum CIP102622. Bacteria were exposed to high concentration of gNO2 (10 or 80 ppm) over a short period of 2 h inside the gas exposure device. The physiological, morphological, and molecular responses of the bacteria after the gas exposure were assessed and compared between the different strains and the two gNO2 concentrations. A highly significant deleterious effect of gNO2 was highlighted, particularly for S. capitis MFP08 and C. tuberculostearicum CIP102622, while S. aureus MFP03 seems to be the less sensitive strain. It appeared that the impact of this nitrosative stress differs according to the bacterial species and the gNO2 concentration. Thus the exposition to gNO2 as an air pollutant could contribute to dysbiosis, which would affect skin homeostasis. The response of the microbiota to the nitrosative stress could be involved in some pathologies such as atopic dermatitis.

2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2021 ◽  
Author(s):  
Yangyang Li ◽  
Yihan Zhu ◽  
Jia Yu Karen Tan ◽  
Hoong Chen Teo ◽  
Andrea Law ◽  
...  

AbstractThe decline in NO2 and PM2.5 pollutant levels were observed during COVID-19 around the world, especially during lockdowns. Previous studies explained such observed decline with the decrease in human mobility, whilst overlooking the meteorological changes (e.g., rainfall, wind speed) that could mediate air pollution level simultaneously. This pitfall could potentially lead to over-or under-estimation of the effect of COVID-19 on air pollution. Consequently, this study aims to re-evaluate the impact of COVID-19 on NO2 and PM2.5 pollutant level in Singapore, by incorporating the effect of meteorological parameters in predicting NO2 and PM2.5 baseline in 2020 using machine learning methods. The results found that NO2 and PM2.5 declined by a maximum of 38% and 36%, respectively, during lockdown period. As two proxies for change in human mobility, taxi availability and carpark availability were found to increase and decrease by a maximum of 12.6% and 9.8%, respectively, in 2020 from 2019 during lockdown. To investigate how human mobility influenced air pollutant level, two correlation analyses were conducted: one between PM2.5 and carpark availability changes at regional scale and the other between NO2 and taxi availability changes at a spatial resolution of 0.01°. The NO2 variation was found to be more associated with the change in human mobility, with the correlation coefficients vary spatially across Singapore. A cluster of stronger correlations were found in the South and East Coast of Singapore. Contrarily, PM2.5 and carpark availability had a weak correlation, which could be due to the limit of regional analyses. Drawing to the wider context, the high association between human mobility and NO2 in the South and East Coast area can provide insights into future NO2 reduction policy in Singapore.Graphical Abstract


2010 ◽  
Vol 59 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Robin L. Stingley ◽  
Wen Zou ◽  
Thomas M. Heinze ◽  
Huizhong Chen ◽  
Carl E. Cerniglia

Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74–100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes.


2019 ◽  
Vol 5 (1) ◽  
pp. 00052-2018 ◽  
Author(s):  
Aneesa Vanker ◽  
Polite M. Nduru ◽  
Whitney Barnett ◽  
Felix S. Dube ◽  
Peter D. Sly ◽  
...  

Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants.A South African cohort study followed mother–infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal andHaemophilus influenzaeB conjugate vaccines.There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated withStreptococcus pneumoniaecarriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03–2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00–1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage ofH. influenzae(aRR 1.68 (95% CI 1.10– 2.57)) orMoraxella catarrhalis(aRR 1.42 (95% CI 1.03–1.97)) in infants.Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.


Author(s):  
Sri Neneng Sundari

Abstract: Motor Vehicle Pollution Doesn't Affect Against ISPA Disease. Air pollution is a problem that often occurs in the big cities, one of which is in the city of Bandung. Air pollution can cause various diseases from the most important ones namely respiratory, cardiovascular diseases, and to other diseases that attack certain organs. Based on the results of the study, air pollution from the transportation sector reached 60 percents, therefore this study will highlight the impact of motor vehicle air pollution on human’s health in Bandung, especially Acute Respiratory Infections (ARI), because the disease is the 2nd largest of the 20 biggest types of diseases in Community Health Centers / Puskesmas in Bandung. From several air pollutant parameters resulting from vehicle exhaust emissions, SO2 compounds were studied, because SO2 can cause irritation to the respiratory tract. This research using descriptive method, it can be concluded that air pollution caused by vehicle exhaust emission gas doesn’t directly affect the occurrence of Acute Respiratory Infections (ARI) in Bandung. The disease can occur due to other factors not examined in this paper, due to indoor air pollution, cigarette smoke pollution, industrial pollution or the continued use of synthetic chemicals.


2018 ◽  
Vol 6 (7) ◽  
pp. 1-124
Author(s):  
Martin L Williams ◽  
Sean Beevers ◽  
Nutthida Kitwiroon ◽  
David Dajnak ◽  
Heather Walton ◽  
...  

BackgroundThe UK’sClimate Change Act 2008(CCA; Great Britain.Climate Change Act 2008. Chapter 27. London: The Stationery Office; 2008) requires a reduction of 80% in carbon dioxide-equivalent emissions by 2050 on a 1990 base. This project quantified the impact of air pollution on health from four scenarios involving particulate matter of ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Two scenarios met the CCA target: one with limited nuclear power build (nuclear replacement option; NRPO) and one with no policy constraint on nuclear (low greenhouse gas). Another scenario envisaged no further climate actions beyond those already agreed (‘baseline’) and the fourth kept 2011 concentrations constant to 2050 (‘2011’).MethodsThe UK Integrated MARKAL–EFOM System (UKTM) energy system model was used to develop the scenarios and produce projections of fuel use; these were used to produce air pollutant emission inventories for Great Britain (GB) for each scenario. The inventories were then used to run the Community Multiscale Air Quality model ‘air pollution model’ to generate air pollutant concentration maps across GB, which then, combined with relationships between concentrations and health outcomes, were used to calculate the impact on health from the air pollution emitted in each scenario. This is a significant improvement on previous health impact studies of climate policies, which have relied on emissions changes. Inequalities in exposure in different socioeconomic groups were also calculated, as was the economic impact of the pollution emissions.ResultsConcentrations of NO2declined significantly because of a high degree of electrification of the GB road transport fleet, although the NRPO scenario shows large increases in oxides of nitrogen emissions from combined heat and power (CHP) sources. Concentrations of PM2.5show a modest decrease by 2050, which would have been larger if it had not been for a significant increase in biomass (wood burning) use in the two CCA scenarios peaking in 2035. The metric quantifying long-term exposure to O3is projected to decrease, while the important short-term O3exposure metric increases. Large projected increases in future GB vehicle kilometres lead to increased non-exhaust PM2.5and particulate matter of ≤ 10 µm emissions. The two scenarios which achieve the CCA target resulted in more life-years lost from long-term exposures to PM2.5than in the baseline scenario. This is an opportunity lost and arises largely from the increase in biomass use, which is projected to peak in 2035. Reduced long-term exposures to NO2lead to many more life-years saved in the ‘CCA-compliant’ scenarios, but the association used may overestimate the effects of NO2itself. The more deprived populations are estimated currently to be exposed to higher concentrations than those less deprived, the contrast being largest for NO2. Despite reductions in concentrations in 2050, the most socioeconomically deprived are still exposed to higher concentrations than the less deprived.LimitationsModelling of the atmosphere is always uncertain; we have shown the model to be acceptable through comparison with observations. The necessary complexity of the modelling system has meant that only a small number of scenarios were run.ConclusionsWe have established a system which can be used to explore a wider range of climate policy scenarios, including more European and global scenarios as well as local measures. Future work could explore wood burning in more detail, in terms of the sectors in which it might be burned and the spatial distribution of this across the UK. Further analyses of options for CHP could also be explored. Non-exhaust emissions from road transport are an important source of particles and emission factors are uncertain. Further research on this area coupled with our modelling would be a valuable area of research.FundingThe National Institute for Health Research Public Health Research programme.


2013 ◽  
Vol 726-731 ◽  
pp. 1396-1399 ◽  
Author(s):  
Ping Liu ◽  
Hong Ling Guo

This study analyzed the impact of building Tianfu new area in Sichuan on Chengdu city air quality. The paper insists the characteristics of terrain and climate in Tianfu new area lead to the difficult to convect and diffuse air pollutant, and the trend of air quality deteriorating has already emerged as the activities of a large number of industries and population. Absolutely ,building Tianfu new area will further aggravate this trend. And the paper suggests the government should take positive measure in management and policy to prevent and control air pollution.


Thorax ◽  
2017 ◽  
Vol 73 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Lucile Sesé ◽  
Hilario Nunes ◽  
Vincent Cottin ◽  
Shreosi Sanyal ◽  
Morgane Didier ◽  
...  

IntroductionIdiopathic pulmonary fibrosis (IPF) has an unpredictable course corresponding to various profiles: stability, physiological disease progression and rapid decline. A minority of patients experience acute exacerbations (AEs). A recent study suggested that ozone and nitrogen dioxide might contribute to the occurrence of AE. We hypothesised that outdoor air pollution might influence the natural history of IPF.MethodsPatients were selected from the French cohort COhorte FIbrose (COFI), a national multicentre longitudinal prospective cohort of IPF (n=192). Air pollutant levels were assigned to each patient from the air quality monitoring station closest to the patient’s geocoded residence. Cox proportional hazards model was used to evaluate the impact of air pollution on AE, disease progression and death.ResultsOnset of AEs was significantly associated with an increased mean level of ozone in the six preceding weeks, with an HR of 1.47 (95% CI 1.13 to 1.92) per 10 µg/m3 (p=0.005). Cumulative levels of exposure to particulate matter PM10 and PM2.5 were above WHO recommendations in 34% and 100% of patients, respectively. Mortality was significantly associated with increased levels of exposure to PM10 (HR=2.01, 95% CI 1.07 to 3.77) per 10 µg/m3 (p=0.03), and PM2.5 (HR=7.93, 95% CI 2.93 to 21.33) per 10 µg/m3 (p<0.001).ConclusionThis study suggests that air pollution has a negative impact on IPF outcomes, corroborating the role of ozone on AEs and establishing, for the first time, the potential role of long-term exposure to PM10 and PM2.5 on overall mortality.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Gianfranco Piccirillo ◽  
Federica Moscucci ◽  
Damiano Magrì

Little is known about the impact of air pollution on neuroautonomic system. The authors have investigated possible influence of air pollution and outdoor temperature on the carotid sinus hypersensitivity (CSH), as main cause of neurally mediated syncope in forty-years-old subjects and older. Pollutants’ concentrations and outdoor temperature of days in which 179 subjects with recurrent syncope underwent carotid sinus massage (CSM) were analyzed. Before this manoeuvre, cardiovascular control by short period heart and blood pressure spectral duration of segment between the end of P and R ECG-waves (PeR) were registred; RR variability on the same short period ECG recordings and their spectral coherence were also analyzed. CSH was found in 57 patients (28 with cardioinhibitory response and 29 subjects showed vasodepressor reaction), while 122 subjects had a normal response. CSM performed during high ozone concentrations was associated with slightly higher risk of cardioinhibitory response (odd ratio 1.012, 95% CI 1.001–1.023, p < 0.05), but neither this or other polluting agent nor outdoor temperature seemed to influence autonomic control in basal resting condition. Thus, ozone seemed to influence response to the CSM in CSH patients and it is probably able to facilitate a cardioinhibitory response, perhaps through an increase of nerve acetylcholine release. P→PR coherence could be useful in predicting a sinus cardioinhibitory hypersensitivity in those cases when CSM is contraindicated.


2018 ◽  
Vol 19 (2) ◽  
pp. 155 ◽  
Author(s):  
Joko Prayitno Susanto ◽  
Wage Komarawidjaja

ABSTRACTThe fertilizer industry based on their environmental concerned in East Kalimantan is committed to protecting environmental sustainability and biodiversity which one of its efforts is to reduce the impact of air pollution by building Green Belt that serves as a buffer zone. The main element of the green belt is the vegetation that naturally acts as an atmospheric purifier by absorbing gaseous and particulate pollutants through its leaves. Green Belt Vegetation, with leafy and coarse leaf surfaces, with wide leaves, dense canopy with tight leaves expected to reduce air pollutant concentration from the fertilizer industry to surrounding residential areas. Thus the Green Belt will be built to help overcome the problem of air pollution impact in the settlement area around industrial area. sengon and teak.Keywords: Green belt, fertilizer industry, air pollution, dust, particulates.ABSTRAKIndustri pupuk ini bermaksud membangun proses industri pupuk yang ramah lingkungan untuk melindungi lingkungan dan keanekearagaman hayati dari pencemaran udara dengan membangun daerah penyangga dikenal sebagai sabuk hijau (Green Belt). Unsur utama sabuk hijau adalah vegetasi yang secara alamiah berfungsi sebagai pembersih atmosfir dengan menyerap polutan berupa gas dan partikel melalui daunnya.   Vegetasi Green Belt, dengan permukaan daun berbulu dan kasar, dengan daun lebar, tajuk yang rapat dengan daun yang rapat diharapkan mampu mengurangi konsentrasi pencemar udara dari industri pupuk menuju areal permukiman disekitarnya. Dengan demikian Green Belt  yang dibangun akan dapat membantu mengatasi masalah dampak pencemaran udara diareal permukiman sekitar kawasan industri.Kata kunci: Sabuk hijau (green belt), industri pupuk, pencemaran udara, debu, partikulat.


Sign in / Sign up

Export Citation Format

Share Document