scholarly journals Quantum Confinement Effects of Thin Co3O4 Films

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Alexandros Barnasas ◽  
Christos S. Garoufalis ◽  
Dimitrios I. Anyfantis ◽  
Nikolaos Bouropoulos ◽  
Panagiotis Poulopoulos ◽  
...  

Thin Co films were deposited on quartz and Corning glass by radio frequency magnetron sputtering. The films were postannealed at 500 °C in a furnace in air atmosphere. The resulting samples were examined with X-ray diffraction experiments, which revealed that they consist of single-phase, polycrystalline Co3O4. The morphology of selected samples was recorded by atomic force microscopy. Ultraviolet-visible light absorption spectroscopy experiments probed the absorbance of the films in the wavelength range 200–1,100 nm. Two types of transitions (energy gaps) were clearly identified. Both of them were found to be “blue shifted” with decreasing film thickness; this is interpreted as evidence of quantum confinement effects. For the case of the first gap value, this was corroborated by calculations based on a combination of the Potential Morphing Method and the effective mass approximation.

2012 ◽  
Vol 725 ◽  
pp. 251-254
Author(s):  
Yuki Mizukami ◽  
D. Kosemura ◽  
M. Takei ◽  
Y. Numasawa ◽  
Y. Ohshita ◽  
...  

Raman spectroscopy and photoluminescence were performed in order to understand the optical properties of nanocrystal Si in relation to quantum confinement effects. The nanocrystal Si (nc-Si) dots in the SiO2 layer were fabricated by the H2 plasma treatment and chemical vapour deposition followed by the oxidation of the nc-Si dots surface. The post-annealing was also performed to improve the crystalline quality of nc-Si at 1050 °C for 5 and 10 min. There is a good correlation of the quantum confinement effects between the results of Raman spectroscopy and photoluminescence. The Raman spectra from nc-Si were analysed using the model of Richter et al. As a result, the sizes of the nc-Si dots were consistent with those obtained by transmission electron microscopy and X-ray diffraction. Moreover, the compressive stress in the nc-Si dots were evaluated which was induced by the SiO2 surroundings.


2010 ◽  
Vol 660-661 ◽  
pp. 1087-1092 ◽  
Author(s):  
Danieli A.P. Reis ◽  
João Paulo Barros Machado ◽  
G.V. Martins ◽  
Carlos de Moura Neto ◽  
M.J.R. Barboza ◽  
...  

The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V allloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600°C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Goksel Durkaya ◽  
Mustafa Alevli ◽  
Max Buegler ◽  
Ramazan Atalay ◽  
Sampath Gamage ◽  
...  

AbstractThe influence of the growth temperature on the phase stability and composition of single-phase In1-xGaxN epilayers has been studied. The In1-xGaxN epilayers were grown by high-pressure Chemical Vapor Deposition with nominally composition of x = 0.6 at a reactor pressure of 15 bar at various growth temperatures. The layers were analyzed by x-ray diffraction, optical transmission spectroscopy, atomic force microscopy, and Raman spectroscopy. The results showed that a growth temperature of 925°C led to the best single phase InGaN layers with the smoothest surface and smallest grain areas


2011 ◽  
Vol 15 ◽  
pp. 69-74 ◽  
Author(s):  
S.D. Pappas ◽  
Panagiotis Poulopoulos ◽  
Vassilios Kapaklis ◽  
S. Grammatikopoulos ◽  
D. Trachylis ◽  
...  

Thin Cu films of thickness 0.4 – 150 nm were deposited via radio frequency magnetron sputtering on Si(100) wafers, corning glass and quartz. Subsequently the Cu films were oxidized in ambient air at 230oC and 425oC in order to produce single-phase Cu2O and CuO, respectively. Selected samples were measured in the transmission geometry with the help of an ultraviolet – visible spectrophotometer. From the absorption spectra of the films, it was found that the gap EB for the dipole allowed transitions showed blue shifts of about 1.2 eV for the Cu2O thinnest film (0.75 nm), whereas the Edirect for the direct gap transitions showed blue shifts of about 0.16 eV for the CuO thinnest film (0.7 nm). The blue shift of the energy gap in the copper-oxide semiconductors is an indication of the presence of strong quantum confinement effects.


2010 ◽  
Vol 9 ◽  
pp. 17-24 ◽  
Author(s):  
Edgar Barajas-Ledesma ◽  
M.L. García-Benjume ◽  
I. Espitia-Cabrera ◽  
A. Bravo-Patiño ◽  
M.E. Contreras-García

The ability of nanostructured TiO2 in anatase phase to eliminate Escherichia coli (E. coli) by UV light irradiation was tested using titania films supported on glass substrates. The films were obtained by electrophoretic deposition of titania sol on sputtered Ti Corning glass substrates. Experimental procedure used to obtain these films and their characterizations are discussed in this paper. Nanostructure nature of the films was analyzed using scanning electron microscopy and atomic force microscopy. Optic microscopy was used to study the photocatalytic activity of films and their interaction with E. coli bacteria, in order to measure the reduction in E. coli colonies. The structure of anatase TiO2 was determined using grazing incidence X-ray diffraction.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2020 ◽  
Vol 92 (6) ◽  
pp. 977-984
Author(s):  
Mayya V. Kulikova ◽  
Albert B. Kulikov ◽  
Alexey E. Kuz’min ◽  
Anton L. Maximov

AbstractFor previously studied Fischer–Tropsch nanosized Fe catalyst slurries, polymer compounds with or without polyconjugating structures are used as precursors to form the catalyst nanomatrix in situ, and several catalytic experiments and X-ray diffraction and atomic force microscopy measurements are performed. The important and different roles of the paraffin molecules in the slurry medium in the formation and function of composite catalysts with the two types of aforementioned polymer matrices are revealed. In the case of the polyconjugated polymers, the alkanes in the medium are “weakly” coordinated with the metal-polymer composites, which does not affect the effectiveness of the polyconjugated polymers. Otherwise, alkane molecules form a “tight” surface layer around the composite particles, which create transport complications for the reagents and products of Fischer-Tropsch synthesis and, in some cases, can change the course of the in situ catalyst formation.


Sign in / Sign up

Export Citation Format

Share Document