scholarly journals “Multiomics” Approaches to Understand and Treat COVID-19: Mass Spectrometry and Next-Generation Sequencing

BioChem ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 210-237
Author(s):  
Diane Appiasie ◽  
Daniel J. Guerra ◽  
Kyle Tanguay ◽  
Steven Jelinek ◽  
Damian D. Guerra ◽  
...  

In the race against COVID-19 for timely therapeutic developments, mass spectrometry-based high-throughput methods have been valuable. COVID-19 manifests an extremely diverse spectrum of phenotypes from asymptomatic to life-threatening, drastic elevations in immune response or cytokine storm, multiple organ failure and death. These observations warrant a detailed understanding of associated molecular mechanisms to develop therapies. In this direction, high-throughput methods that generate large datasets focusing on changes in protein interactions, lipid metabolism, transcription, and epigenetic regulation of gene expression are extremely beneficial sources of information. Hence, mass spectrometry-based methods have been employed in several studies to detect changes in interactions among host proteins, and between host and viral proteins in COVID-19 patients. The methods have also been used to characterize host and viral proteins, and analyze lipid metabolism in COVID-19 patients. Information obtained using the above methods are complemented by high-throughput analysis of transcriptomic and epigenomic changes associated with COVID-19, coupled with next-generation sequencing. Hence, this review discusses the most recent studies focusing on the methods described above. The results establish the importance of mass spectrometry-based studies towards understanding the infection process, immune imbalance, disease mechanism, and indicate the potential of the methods’ therapeutic developments and biomarker screening against COVID-19 and future outbreaks.

2009 ◽  
Vol 390 (11) ◽  
Author(s):  
Christian Beisel ◽  
Renato Paro

Abstract Transcription factor regulation of gene expression and chromatin-controlled epigenetic memory systems are closely cooperating in establishing the pluripotent state of embryonic stem (ES) cells and maintaining cell fate decisions throughout development of an organism. A thorough understanding of the regulatory transcriptional circuitry that rules the underlying plastic yet heritable gene expression programs in ES cells is of great importance. With the advent of next-generation sequencing technologies facilitating the quantitative assessment of functional genomics assays it is now feasible to interrogate transcription networks at a genome-wide scale. Here, we discuss the application of next-generation sequencing in elucidating the molecular mechanisms underlying ES cell function.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 437
Author(s):  
Ilaria Maria Saracino ◽  
Matteo Pavoni ◽  
Angelo Zullo ◽  
Giulia Fiorini ◽  
Tiziana Lazzarotto ◽  
...  

Background and aims: Only a few antimicrobials are effective against H. pylori, and antibiotic resistance is an increasing problem for eradication therapies. In 2017, the World Health Organization categorized clarithromycin resistant H. pylori as a “high-priority” bacterium. Standard antimicrobial susceptibility testing can be used to prescribe appropriate therapies but is currently recommended only after the second therapeutic failure. H. pylori is, in fact, a “fastidious” microorganism; culture methods are time-consuming and technically challenging. The advent of molecular biology techniques has enabled the identification of molecular mechanisms underlying the observed phenotypic resistance to antibiotics in H. pylori. The aim of this literature review is to summarize the results of original articles published in the last ten years, regarding the use of Next Generation Sequencing, in particular of the whole genome, to predict the antibiotic resistance in H. pylori.Methods: a literature research was made on PubMed. The research was focused on II and III generation sequencing of the whole H. pylori genome. Results: Next Generation Sequencing enabled the detection of novel, rare and complex resistance mechanisms. The prediction of resistance to clarithromycin, levofloxacin and amoxicillin is accurate; for other antimicrobials, such as metronidazole, rifabutin and tetracycline, potential genetic determinants of the resistant status need further investigation.


2017 ◽  
Vol 65 (8) ◽  
pp. 1155-1158 ◽  
Author(s):  
Thiago Rodrigo de Noronha ◽  
Miguel Mitne-Neto ◽  
Maria de Lourdes Chauffaille

Karyotype (KT) aberrations are important prognostic factors for acute myeloid leukemia (AML); however, around 50% of cases present normal results. Single nucleotide polymorphism array can detect chromosomal gains, losses or uniparental disomy that are invisible to KT, thus improving patients’ risk assessment. However, when both tests are normal, important driver mutations can be detected by the use of next-generation sequencing (NGS). Fourteen adult patients with AML with normal cytogenetics were investigated by NGS for 19 AML-related genes. Every patient presented at least one mutation:DNMT3Ain nine patients;IDH2in six;IDH1in three;NRASandNPM1in two; andTET2,ASXL1,PTPN11, andRUNX1in one patient. No mutations were found inFLT3,KIT,JAK2,CEBPA,GATA2,TP53,BRAF,CBL,KRAS,andWT1genes. Twelve patients (86%) had at least one mutation in genes related with DNA methylation (DNMT3A,IDH1,IDH2,andTET2), which is involved in regulation of gene expression and genomic stability. All patients could be reclassified based on genomic status and nine had their prognosis modified. In summary, NGS offers insights into the molecular pathogenesis and biology of cytogenetically normal AML in Brazilian patients, indicating that the prognosis could be further stratified by different mutation combinations. This study shows a different frequency of mutations in Brazilian population that should be confirmed.


2012 ◽  
Vol 37 (5) ◽  
pp. 811-820 ◽  
Author(s):  
Rajeev K Varshney ◽  
Himabindu Kudapa ◽  
Manish Roorkiwal ◽  
Mahendar Thudi ◽  
Manish K Pandey ◽  
...  

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Wells W. Wu ◽  
Je-Nie Phue ◽  
Chun-Ting Lee ◽  
Changyi Lin ◽  
Lai Xu ◽  
...  

2019 ◽  
Vol 220 (10) ◽  
pp. 1609-1619 ◽  
Author(s):  
Sarah Wagner ◽  
David Roberson ◽  
Joseph Boland ◽  
Aimée R Kreimer ◽  
Meredith Yeager ◽  
...  

AbstractBackgroundHuman papillomaviruses (HPV) cause over 500 000 cervical cancers each year, most of which occur in low-resource settings. Human papillomavirus genotyping is important to study natural history and vaccine efficacy. We evaluated TypeSeq, a novel, next-generation, sequencing-based assay that detects 51 HPV genotypes, in 2 large international epidemiologic studies.MethodsTypeSeq was evaluated in 2804 cervical specimens from the Study to Understand Cervical Cancer Endpoints and Early Determinants (SUCCEED) and in 2357 specimens from the Costa Rica Vaccine Trial (CVT). Positive agreement and risks of precancer for individual genotypes were calculated for TypeSeq in comparison to Linear Array (SUCCEED). In CVT, positive agreement and vaccine efficacy were calculated for TypeSeq and SPF10-LiPA.ResultsWe observed high overall and positive agreement for most genotypes between TypeSeq and Linear Array in SUCCEED and SPF10-LiPA in CVT. There was no significant difference in risk of precancer between TypeSeq and Linear Array in SUCCEED or in estimates of vaccine efficacy between TypeSeq and SPF10-LiPA in CVT.ConclusionsThe agreement of TypeSeq with Linear Array and SPF10-LiPA, 2 well established standards for HPV genotyping, demonstrates its high accuracy. TypeSeq provides high-throughput, affordable HPV genotyping for world-wide studies of cervical precancer risk and of HPV vaccine efficacy.


2019 ◽  
Vol 498 ◽  
pp. 38-46 ◽  
Author(s):  
Mia Yang Ang ◽  
Teck Yew Low ◽  
Pey Yee Lee ◽  
Wan Fahmi Wan Mohamad Nazarie ◽  
Victor Guryev ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151775 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Michael D. Armani ◽  
Patricia A. Fetsch ◽  
Liqiang Xi ◽  
Tina Thu Pham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document