scholarly journals Tissue Level Mechanical Properties and Extracellular Matrix Investigation of the Bovine Jugular Venous Valve Tissue

2019 ◽  
Vol 6 (2) ◽  
pp. 45 ◽  
Author(s):  
Adam A. Benson ◽  
Hsiao-Ying Shadow Huang

Jugular venous valve incompetence has no long-term remedy and symptoms of transient global amnesia and/or intracranial hypertension continue to discomfort patients. During this study, we interrogate the synergy of the collagen and elastin microstructure that compose the bi-layer extracellular matrix (ECM) of the jugular venous valve. In this study, we investigate the jugular venous valve and relate it to tissue-level mechanical properties, fibril orientation and fibril composition to improve fundamental knowledge of the jugular venous valves toward the development of bioprosthetic venous valve replacements. Steps include: (1) multi loading biaxial mechanical tests; (2) isolation of the elastin microstructure; (3) imaging of the elastin microstructure; and (4) imaging of the collagen microstructure, including an experimental analysis of crimp. Results from this study show that, during a 3:1 loading ratio (circumferential direction: 900 mN and radial direction: 300 mN), elastin may have the ability to contribute to the circumferential mechanical properties at low strains, for example, shifting the inflection point toward lower strains in comparison to other loading ratios. After isolating the elastin microstructure, light microscopy revealed that the overall elastin orients in the radial direction while forming a crosslinked mesh. Collagen fibers were found undulated, aligning in parallel with neighboring fibers and orienting in the circumferential direction with an interquartile range of −10.38° to 7.58° from the circumferential axis (n = 20). Collagen crimp wavelength and amplitude was found to be 38.46 ± 8.06 µm and 4.51 ± 1.65 µm, respectively (n = 87). Analyzing collagen crimp shows that crimp permits about 12% true strain circumferentially, while straightening of the overall fibers accounts for more. To the best of the authors’ knowledge, this is the first study of the jugular venous valve linking the composition and orientation of the ECM to its mechanical properties and this study will aid in forming a structure-based constitutive model.


2009 ◽  
Vol 22 (03) ◽  
pp. 210-215 ◽  
Author(s):  
C.A. Phillips ◽  
S.A. Fernandez ◽  
Y. Li ◽  
S.S. Huja

Summary Objectives: The purpose of this study was to quantify the tissue level mechanical properties of cortical bone of skeletally immature (~five-month-old) Beagle dogs and compare them to data from mature dogs measured in a previous study. Methods: Eight femoral cross sectional specimens (two bone sections / dog) were obtained from four skeletally immature dogs. A pair of calcein bone labels were administered intravenously to the dogs to mark sites of active mineralization prior to euthanasia. Prepared bone specimens were placed in a nanoindenter specimen holder and the previously identified calcein labelled osteons were located. Labelled (n = 128) and neighbouring unlabelled (n = 127) osteons in skeletally immature femurs were examined by instrumented indentation testing. Indents were made to a depth of 500 nm at a loading rate of 10 nm/s. Indentation modulus (IM) and hardness (H) were obtained. Results: The overall IM of the cortical bone in the skeletally mature groups was significantly greater than in the immature group (p = 0.0011), however overall H was not significantly different. The differences between the groups in IM were significant for the unlabelled osteons (p = 0.001), but not for the labelled osteons (p = 0.56). Conclusion: There are differences in the IM of unlabelled osteons in skeletally immature and mature groups of Beagle dogs. In contrast to whole bone mechanical tests, where there are obvious differences between growing and mature bones, there are only small differences in the micro-mechanical properties.



2021 ◽  
Vol 7 (2) ◽  
pp. 613-616
Author(s):  
Julia Schubert ◽  
Daniela Arbeiter ◽  
Andreas Götz ◽  
Kerstin Lebahn ◽  
Wolfram Schmidt ◽  
...  

Abstract Electrospinning is used for producing nonwovens for medical polymer-based implants, such as prosthetic valves or covered scaffolds. In this study, nonwovens for prosthetic venous valves are investigated regarding their morphology and mechanics in physiological medium. Spinning molds were developed based on previous venous valve leaflet designs, 3D printed in different sizes and covered with electrospun nonwovens. Samples were stored in a physiological 0.9% saline at 37°C to investigate the influence of fiber rearrangement and swelling in medium for several weeks. Two different nonwovens of thermoplastic silicone-based polycarbonaturethane (TSPCU) were compared. Tensile test results show that storage in medium has a relevant influence on the mechanical properties. SEM images of TSPCU show substantially increased fiber diameters after 8 days stored in medium. After detaching the valve leaflet nonwovens from the molds, shrinkage of the material of approximately 12% was detected. A suitable valve size could be identified for joining with the stent structure into an interventional prosthetic venous valve. The results demonstrate the influence of storage conditions on the morphological and mechanical properties of electrospun TSPCU nonwovens. For development and dimensioning of venous valve leaflets, this change in mechanical behavior and possible shrinkage of the material has to be considered.



Author(s):  
Winston R. Becker ◽  
Matthew R. Webster ◽  
Raffaella De Vita

Insects employ a network of tracheal tubes to transport oxygen directly to every cell of the body. During respiration, these tubes undergo localized and rhythmic deformations due to local variation in their structural and mechanical properties. In order to elucidate the mechanisms of insect respiration, mechanical tests on ring sections of tracheal tubes extracted from American Cockroaches were conducted. A total of 33 specimens collected from 14 tracheal tubes located in the upper thorax of the insects were successfully tested. The ultimate tensile strength (22.6 ± 13.3 MPa), ultimate strain (1.57 ± 0.68 %), elastic modulus (1740 ± 840 MPa), and toughness (0.175 ± 0.156 MJm −3) were measured in the radial direction. The mechanical properties of ring sections excised from the same tracheal tube were shown to exhibit less variability than those of ring sections excised from different tracheal tubes. The results of this study will help in determining the relationship between the mechanics and structure of tracheal tube thus ultimately leading to the creation of novel bio-inspired micro-systems.



2019 ◽  
Vol 9 (5) ◽  
pp. 20190026 ◽  
Author(s):  
Kyoko Yoshida ◽  
Charles Jayyosi ◽  
Nicole Lee ◽  
Mala Mahendroo ◽  
Kristin M. Myers

The uterine cervix undergoes a complex remodelling process during pregnancy, characterized by dramatic changes in both extracellular matrix (ECM) structure and mechanical properties. Understanding the cervical remodelling process in a term or preterm birth will aid efforts for the prevention of preterm births (PTBs), which currently affect 14.8 million babies annually worldwide. Animal models of pregnancy, particularly rodents, continue to provide valuable insights into the cervical remodelling process, through the study of changes in ECM structure and mechanical properties at defined gestation time points. Currently, there is a lack of a collective, quantitative framework to relate the complex, nonlinear mechanical behaviour of the rodent cervix to changes in ECM structure. This review aims to fill this gap in knowledge by outlining the current understanding of cervical remodelling during pregnancy in rodent models in the context of solid biomechanics. Here we highlight the collective contribution of multiple mechanical studies which give evidence that cervical softening coincides with known ECM changes throughout pregnancy. Taken together, mechanical tests on tissue from pregnant rodents reveal the cervix’s remarkable ability to soften dramatically during gestation to allow for a compliant tissue that can withstand damage and can dissipate mechanical loads.



2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.



Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.



Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 293
Author(s):  
José M. Acosta-Cuevas ◽  
José González-García ◽  
Mario García-Ramírez ◽  
Víctor H. Pérez-Luna ◽  
Erick Omar Cisneros-López ◽  
...  

Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.



Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Hong Yang ◽  
Mingyu Gao ◽  
Jinxin Wang ◽  
Hongbo Mu ◽  
Dawei Qi

In the absence of high-quality hardwood timber resources, we have gradually turned our attention from natural forests to planted fast-growing forests. However, fast-growing tree timber in general has defects such as low wood density, loose texture, and poor mechanical properties. Therefore, improving the performance of wood through efficient and rapid technological processes and increasing the utilization of inferior wood is a good way to extend the use of wood. Densification of wood increases the strength of low-density wood and extends the range of applications for wood and wood-derived products. In this paper, the effects of ultrasonic and vacuum pretreatment on the properties of high-performance wood were explored by combining sonication, vacuum impregnation, chemical softening, and thermomechanical treatments to densify the wood; then, the changes in the chemical composition, microstructure, and mechanical properties of poplar wood before and after treatment were analyzed comparatively by FT-IR, XRD, SEM, and mechanical tests. The results showed that with ultrasonic pretreatment and vacuum impregnation, the compression ratio of high-performance wood reached its highest level and the MOR and MOE reached their maximums. With the help of this method, fast-growing softwoods can be easily prepared into dense wood materials, and it is hoped that this new material can be applied in the fields of construction, aviation, and automobile manufacturing.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.



2015 ◽  
Vol 35 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Rahim Eqra ◽  
Kamal Janghorban ◽  
Habib Daneshmanesh

Abstract Because of extraordinary physical, chemical and mechanical properties, graphene nanosheets (GNS) are suitable fillers for optimizing the properties of different polymers. In this research, the effect of GNS content (up to 1 wt.%) on tensile and flexural properties, morphology of fracture surface, and toughening mechanism of epoxy were investigated. Results of mechanical tests showed a peak for tensile and flexural strength of samples with 0.1 wt.% GNS such that the tensile and flexural strength improved by 13% and 3.3%, respectively. The Young’s modulus and flexural modulus increased linearly with GNS content, although the behavior of the Young’s modulus was more remarkable. Morphological investigations confirmed this behavior because the GNS dispersion in the epoxy matrix was uniform at lower contents and agglomerated at higher contents. Finally, microscopical observation showed that the major toughening mechanism of graphene-epoxy nanocomposites was crack path deflection, which changed the mirror fracture surface of the pure epoxy to rough surface.



Sign in / Sign up

Export Citation Format

Share Document