scholarly journals The Impact of Host Genotype, Intestinal Sites and Probiotics Supplementation on the Gut Microbiota Composition and Diversity in Sheep

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 769
Author(s):  
Xiaoqi Wang ◽  
Zhichao Zhang ◽  
Xiaoping Wang ◽  
Qi Bao ◽  
Rujing Wang ◽  
...  

Three sampling strategies with a 16s rRNA high-throughput sequencing and gene expression assay (by RT-PCR) were designed, to better understand the host and probiotics effect on gut microbiota in sheep. Sampling: (1) colon contents and back-fat tissues from small-tailed Han sheep (SHS), big-tailed Hulun Buir sheep (BHBS), and short-tailed Steppe sheep (SHBS) (n = 12, 14, 12); (2) jejunum, cecum and colon contents, and feces from Tan sheep (TS, n = 6); (3) feces from TS at 4 time points (nonfeeding, 30 and 60 feeding days, and stop feeding 30 days) with probiotics supplementation (n = 7). The results indicated SHS had the highest Firmicutes abundance, the thinnest back-fat, and the lowest expression of C/EBPβ, C/EBPδ, ATGL, CFD, and SREBP1. Some bacteria orders and families could be potential biomarkers for sheep breeds with a distinct distribution of bacterial abundance, implying the host genotype is predominant in shaping unique microbiota under a shared environment. The microbiota diversity and Bifidobacterial populations significantly changed after 60 days of feeding but restored to its initial state, with mostly colonies, after 30 days ceased. The microbiota composition was greatly different between the small and large intestines, but somewhat different between the large intestine and feces; feces may be reliable for studying large intestinal microbiota in ruminants.

Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2188 ◽  
Author(s):  
Ning-Ning Zhang ◽  
Wen-Hui Guo ◽  
Han Hu ◽  
A-Rong Zhou ◽  
Qing-Pei Liu ◽  
...  

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


2021 ◽  
Vol 22 (18) ◽  
pp. 10028
Author(s):  
Julia Doroszkiewicz ◽  
Magdalena Groblewska ◽  
Barbara Mroczko

The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.


2014 ◽  
Vol 74 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Harry J. Flint ◽  
Sylvia H. Duncan ◽  
Karen P. Scott ◽  
Petra Louis

The gut microbiota and its metabolic products interact with the host in many different ways, influencing gut homoeostasis and health outcomes. The species composition of the gut microbiota has been shown to respond to dietary change, determined by competition for substrates and by tolerance of gut conditions. Meanwhile, the metabolic outputs of the microbiota, such as SCFA, are influenced both by the supply of dietary components and via diet-mediated changes in microbiota composition. There has been significant progress in identifying the phylogenetic distribution of pathways responsible for formation of particular metabolites among human colonic bacteria, based on combining cultural microbiology and sequence-based approaches. Formation of butyrate and propionate from hexose sugars, for example, can be ascribed to different bacterial groups, although propionate can be formed via alternative pathways from deoxy-sugars and from lactate by a few species. Lactate, which is produced by many gut bacteria in pure culture, can also be utilised by certain Firmicutes to form butyrate, and its consumption may be important for maintaining a stable community. Predicting the impact of diet upon such a complex and interactive system as the human gut microbiota not only requires more information on the component groups involved but, increasingly, the integration of such information through modelling approaches.


2018 ◽  
Vol 6 (20) ◽  
pp. e13881 ◽  
Author(s):  
Nina Brandt ◽  
Dorota Kotowska ◽  
Caroline M. Kristensen ◽  
Jesper Olesen ◽  
Ditte O. Lützhøft ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 198
Author(s):  
Yi-Ting Lin ◽  
Ting-Yun Lin ◽  
Szu-Chun Hung ◽  
Po-Yu Liu ◽  
Wei-Chun Hung ◽  
...  

β-blockers are commonly prescribed to treat cardiovascular disease in hemodialysis patients. Beyond the pharmacological effects, β-blockers have potential impacts on gut microbiota, but no study has investigated the effect in hemodialysis patients. Hence, we aim to investigate the gut microbiota composition difference between β-blocker users and nonusers in hemodialysis patients. Fecal samples collected from hemodialysis patients (83 β-blocker users and 110 nonusers) were determined by 16S ribosomal RNA amplification sequencing. Propensity score (PS) matching was performed to control confounders. The microbial composition differences were analyzed by the linear discriminant analysis effect size, random forest, and zero-inflated Gaussian fit model. The α-diversity (Simpson index) was greater in β-blocker users with a distinct β-diversity (Bray–Curtis Index) compared to nonusers in both full and PS-matched cohorts. There was a significant enrichment in the genus Flavonifractor in β-blocker users compared to nonusers in full and PS-matched cohorts. A similar finding was demonstrated in random forest analysis. In conclusion, hemodialysis patients using β-blockers had a different gut microbiota composition compared to nonusers. In particular, the Flavonifractor genus was increased with β-blocker treatment. Our findings highlight the impact of β-blockers on the gut microbiota in hemodialysis patients.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3885
Author(s):  
Ali Khalaf Al Khalaf ◽  
Abdulrasheed O. Abdulrahman ◽  
Mohammed Kaleem ◽  
Suza Mohammad Nur ◽  
Amer H. Asseri ◽  
...  

The gut microbiota consists of a community of microorganisms that inhabit the large intestine. These microbes play important roles in maintaining gut barrier integrity, inflammation, lipid and carbohydrate metabolism, immunity, and protection against pathogens. However, recent studies have shown that dysfunction in the gut microbiota composition can lead to the development of several diseases. Urolithin A has recently been approved as a functional food ingredient. In this study, we examined the potentials of urolithin A (Uro-A) and B (Uro-B) in improving metabolic functions and their impact on gut microbiota composition under a metabolically unchallenged state in normal rats. Male Wistar rats (n = 18) were randomly segregated into three groups, with Group 1 serving as the control group. Groups 2 and 3 were administered with 2.5 mg/kg Uro-A and Uro-B, respectively, for four weeks. Our results showed that both Uro-A and B improved liver and kidney functions without affecting body weight. Metagenomic analysis revealed that both Uro-A and B induced the growth of Akkermansia. However, Uro-A decreased species diversity and microbial richness and negatively impacted the composition of pathogenic microbes in normal rats. Taken together, this study showed the differential impacts of Uro-A and B on the gut microbiota composition in normal rats and would thus serve as a guide in the choice of these metabolites as a functional food ingredient or prebiotic.


Sign in / Sign up

Export Citation Format

Share Document