scholarly journals Hydroxychloroquine Attenuates Acute Inflammation (LPS)-Induced Apoptosis via Inhibiting TRPV1 Channel/ROS Signaling Pathways in Human Monocytes

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 967
Author(s):  
Mustafa Güzel ◽  
Orhan Akpınar

Acute inflammation (INF) and apoptosis are induced in monocytes by the generation of several factors, including the products of cytosolic oxygen free radicals (cROS) and the excessive influx of Ca2+ via the stimulation of TRPV1. These are main factors in the etiology of monocyte activation-induced inflammatory and neurodegenerative diseases. Importantly, the protective action of hydroxychloroquine (HCQ) treatment via the inhibition of TRPV1 on the levels of inflammatory factors, cROS, and apoptosis in acute INF (lipopolysaccharide, LPS)-exposed neuronal cells was recently reported. However, the relationships between acute INF via TRPV1 activation and HCQ in monocytes have not been fully clarified yet. The cell membrane of U937 human monocytes contains natural TRPV1. In the study plan, we used U937 cells in four main groups, namely control, HCQ (60 μM for 48 h), INF (1 μg/mL LPS for 16 h), and HCQ + INF. The current data indicate that LPS-induced acute INF caused the upregulation of excessive cytosolic Ca2+ accumulation via the stimulation of TRPV1 in the cells. The treatment of INF additionally upregulated the levels of apoptosis and cytokines (IL6, IL1β, and TNFα), due to upregulated cROS and lipid peroxidation levels as well as upregulated generation of caspase -3 (CAS3) and -9 (CAS9) but a decrease in glutathione and glutathione peroxidase. The expression levels of TRPV1, Bax, CAS3, and CAS9 were also upregulated by the treatment of LPS. However, treatment with HCQ and TRPV1 blocker (capsazepine) modulated the levels of cytokines, caspases, cROS, Ca2+ influx, and apoptosis through the modulation of TRPV1 in the U937 that were stimulated with LPS. In summary, the present data suggest TRPV1 activation through the acute INF (LPS)-induced inflammatory, oxidant, and apoptotic adverse actions in monocyte cells, whereas HCQ prevented adverse actions via the modulation of TRPV1. The results may be significant in the modulation of monocyte activation-caused inflammatory and neurodegenerative diseases.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sandra Armengol Lopez ◽  
Kathleen M. Botham ◽  
Charlotte Lawson

Chylomicron remnants (CMRs) contribute directly to human monocyte activationin vitro, by increasing reactive oxygen species (ROS) production and cell migration. In this study, the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states, normal (CRLPs), protected from oxidation by incorporation of the antioxidant, probucol (pCRLPs), or oxidised with CuSO4(oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs, whilst secretion on monocyte chemoattractant protein-1 was reduced, but oxCRLPs had no additional effect. In contrast, pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.


1989 ◽  
Vol 170 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Y H Nong ◽  
E Remold-O'Donnell ◽  
T W LeBien ◽  
H G Remold

Treatment of human monocytes for 24-48 h with the anti-CD43 mAb L10 caused five- to sevenfold stimulation of hydrogen peroxide-producing capacity, an established characteristic of activated monocytes. Peroxide-producing capacity induced by L10 antibody (1.6 +/- 0.3 nmol H2O2/micrograms DNA/h) was comparable with that induced by IFN-gamma (1.3 +/- 0.4 nmol H2O2/micrograms DNA/h), but appeared more rapidly (maximal at 24 h) than in the IFN-gamma-treated monocytes (maximal at 48 h). Treatment of monocytes with L10 mAb also caused dramatic increase in aggregation (homotypic adhesion). Induction of monocyte aggregation by L10 mAb required incubation for 1-8 h in the presence of Mg2+ and was abrogated by TA-1, an anti-LFA-1-alpha mAb. Thus, L10-induced monocyte activation proceeds via a Mg2+-requiring aggregation stage involving LFA-1. Whereas the extent of monocyte aggregation induced by L10 mAb and by IFN-gamma were comparable, the L10-induced aggregation occurred more rapidly (maximal at 8 h) than the IFN-gamma-induced aggregation (maximal at 24 h). The more rapid appearance of aggregation and increased hydrogen peroxide capacity in L10-treated monocytes suggests that the L10-induced activation pathway is independent of IFN-gamma-and IFN-gamma-R dependent events. These findings suggest that the surface molecule CD43 is the receptor of an independent activation pathway that leads in lymphocytes to proliferation and in monocytes to activation.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3402-3411 ◽  
Author(s):  
Maria Carla Bosco ◽  
Sandra Rottschafer ◽  
Lynn S. Taylor ◽  
John R. Ortaldo ◽  
Dan L. Longo ◽  
...  

Abstract The antineoplastic agent bryostatin-1 (bryo-1) possesses powerful immunomodulatory properties and can function as a biological response modifier in vivo. However, there is currently little information regarding the effects of bryo-1 on cells of the monocytic lineage. In this study, we demonstrate that bryo-1 can potently induce the production of proinflammatory cytokines from human peripheral blood monocytes. Stimulation of monocytes with subnanomolar concentrations of bryo-1 significantly upregulated the constitutive levels of interleukin-8 (IL-8) mRNA and induced the expression of IL-1β, tumor necrosis factor-α (TNF-α), and IL-6 mRNA in a time and dose-dependent manner. Accordingly, secretion of all four proinflammatory cytokines was induced after monocyte exposure to bryo-1. Furthermore, we showed that bryo-1 selectively synergized with IL-2 in triggering monocyte activation, and this effect seemed to be dependent, at least in part, on the ability of bryo-1 to upregulate IL-2Rγ chain expression. Finally, we demonstrated that the responses of monocytes to bryo-1 could be blocked by the protein kinase C (PKC) inhibitors staurosporine and UCN-01, indicating a role for PKC in monocyte activation by bryo-1. These results show for the first time that bryo-1 is a powerful activator of human monocytes and suggest that stimulation of monokine secretion by bryo-1 may represent at least one of the mechanisms responsible for the in vivo antitumor activity of this drug.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 656
Author(s):  
Dariusz Koziorowski ◽  
Monika Figura ◽  
Łukasz M. Milanowski ◽  
Stanisław Szlufik ◽  
Piotr Alster ◽  
...  

Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhi-Xiu Lin ◽  
Qing-Qiu Mao ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  

The neurotoxicity of amyloid-β(Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated fromUncaria rhynchophylla,exerts neuroprotective effect againstAβ25–35-induced neurotoxicityin vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN againstAβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation inAβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β(p-GSK-3β). Lithium chloride blockedAβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3βinhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversedAβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN againstAβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3βsignaling pathway.


1982 ◽  
Vol 38 (3) ◽  
pp. 817-824 ◽  
Author(s):  
T Ogawa ◽  
S Kotani ◽  
K Fukuda ◽  
Y Tsukamoto ◽  
M Mori ◽  
...  

2005 ◽  
Vol 18 (3) ◽  
pp. 403-415 ◽  
Author(s):  
L. Ottonello ◽  
M. Bertolotto ◽  
F. Montecucco ◽  
P. Dapino ◽  
F. Dallegri

Monocytes and macrophages play a key role in the initiation and persistence of inflammatory reactions. The possibility to interfere with the survival of these cells, once recruited and activated at sites of inflammation, is an attractive therapeutic option. Although resting monocytes are susceptible to pharmacologically induced apoptosis, no data are available about the possibility to modulate the survival of activated monocytes. The present work was planned to investigate if dexamethasone is able to promote apoptosis of human monocytes activated by immune complexes. When monocytes were cultured with immune complexes, a dose-dependent inhibition of apoptosis was observed. Dexamethasone stimulated apoptosis of resting and activated monocytes in a dose-dependent manner. Both the immune complex inhibitory activity and dexamethasone stimulatory properties depend on NF-kB/XIAP and Ras/MEK/ERK/CD95 pathways. In fact, the exposure of monocytes to immune complexes increased NF-kB activation and XIAP expression, which in turn were inhibited by dexamethasone. On the other hand, immune complex-stimulated monocytes displayed a reduced expression of CD95, which is prevented by dexamethasone, as well as by MEK inhibitor U0126. Furthermore, anti-CD95 ZB4 mAb prevented dexamethasone-induced apoptosis in immune complex-stimulated monocytes. Similarly, ZB4 inhibited dexamethasone-mediated augmentation of caspase 3 activity. The present findings suggest that Fc triggering by insoluble immune complexes result in the activation of two intracellular pathways crucial for the survival of monocytes: 1. Ras/MEK/ERK pathway responsible for the down-regulation of CD95 expression; 2. NF-kB pathway governing the expression of XIAP. Both the pathways are susceptible to inhibition by monocyte treatment with pharmacologic concentrations of dexamethasone.


Sign in / Sign up

Export Citation Format

Share Document