scholarly journals Effects of Melissa officinalis L. Essential Oil in Comparison with Anaesthetics on Gill Tissue Damage, liver metabolism and Immune Parameters in Sea Bass (Lateolabrax maculatus) during Simulated live Transport

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Qi Wang ◽  
Jun Mei ◽  
Jie Cao ◽  
Jing Xie

In the current study, Melissa officinalis L. essential oil (MOEO), a novel sedative and anaesthetic, was employed in transport water to obtain a lower stress effect and higher survival rate for live marine fish. The effect of MOEO and various types of anaesthetics, administered at a low temperature on gill morphology, liver function and immunological parameters of living sea bass (Lateolabrax maculatus) subjected to transport stress, was evaluated to optimize the anaesthetic and sedative concentrations during live sea bass transport. Light microscopy and scanning electron microscopy of sea bass, subjected to simulated live transport for 72 h, demonstrated that the changes in the morphological characteristics of gill tissue treated with 40 mg/L MOEO (A3 group) were minimal in comparison to those observed in untreated sea bass. The results of pyruvate kinase (PK), phosphofructokinase (PFK), hexokinase (HK), hepatic glycogen (Gly), superoxide dismutase (SOD), lipid peroxides (MDA) and Caspase-3 assays indicated that the glycolysis rate, energy consumption, lipid peroxidation and hepatocyte apoptosis were the lowest in the A3 group. The values of the two immune parameters, lysozyme (LZM) and fish immunoglobulin M (IgM), indicated the strongest immunity ability in the A3 group. After 12 h recovery, sea bass treated with 30 mg/L MS-222 (B group) displayed a 100% survival rate, sea bass treated with 20 mg/L (A2 group) and 40 mg/L (A3 group) MOEO displayed a 96% survival rate, sea bass treated with 20 mg/L eugenol (C group) had a 94% survival rate, and untreated sea bass (CK group) had a 50% survival rate. Therefore, the addition MOEO to the transport water had anaesthetic and sedative effects similar to MS-222 and eugenol. The results confirmed that the addition of MOEO to the transport water could reduce tissue damage, energy metabolism, and the oxidative stress response in sea bass during transport.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1066
Author(s):  
Fahima Abdellatif ◽  
Muhammad Akram ◽  
Samir Begaa ◽  
Mohammed Messaoudi ◽  
Adel Benarfa ◽  
...  

This study describes the minerals elements, chemical composition, antioxidant and antimicrobial activities of Algerian Melissa officinalis plant. The essential oil (EO) was extracted by hydrodistillation (HD) using a Clevenger-type apparatus of dry leaves of M. officinalis and was analyzed by two techniques, gas chromatography coupled with flame ionization (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). Eighteen minerals comprising both macro- and microelements (As, Br, K, La, Na, Sb, Sm, Ba, Ca, Ce, Co, Cr, Cs, Fe, Rb, Sc, Th, and Zn) were determined using neutron activation analysis technique for the first time from Algerian Melissa officinalis plant. Seventy-eight compounds were identified in the essential oil, representing 94.090% of the total oil and the yields were 0.470%. The major component was geranial (45.060%). Other predominant components were neral (31.720%) and citronellal (6.420%). The essential oil presented high antimicrobial activity against microorganisms, mainly five human pathogenic bacteria, one yeast, Candida albicans, and two phytopathogenic fungi. The results can be used as a source of information for the pharmaceutical industry and medical research.


LWT ◽  
2021 ◽  
pp. 111521
Author(s):  
Jiali Chen ◽  
Weibin Bai ◽  
Dongbao Cai ◽  
Zhiling Yu ◽  
Baojun Xu

2018 ◽  
Vol 35 (2) ◽  
pp. 551-557 ◽  
Author(s):  
Wenhao Wang ◽  
Hongbiao Dong ◽  
Yongxu Sun ◽  
Ming Cao ◽  
Yafei Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document