scholarly journals Molecular Targeting of VEGF with a Suramin Fragment–DOCA Conjugate by Mimicking the Action of Low Molecular Weight Heparins

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Jooho Park ◽  
Tae-Bong Kang ◽  
Ji-Hong Lim ◽  
Hyung-Sik Won

Molecular targeting of growth factors has shown great therapeutic potential in pharmaceutical research due to their roles in pathological conditions. In the present study, we developed a novel suramin fragment and deoxycholic acid conjugate (SFD) that exhibited the potential to bind to the heparin-binding site (HBD) of vascular endothelial growth factor (VEGF) and to inhibit its pathogenic action for the first time. Notably, SFD was optimally designed for binding to the HBD of VEGF using the naphthalenetrisulfonate group, allowing to observe its excellent binding efficacy in a surface plasmon resonance (SPR) study, showing remarkable binding affinity (KD = 3.8 nM) as a small molecule inhibitor. In the tubular formation assay, it was observed that SFD could bind to HBD and exhibit antiangiogenic efficacy by inhibiting VEGF, such as heparins. The cellular treatment of SFD resulted in VEGF-inhibitory effects in human umbilical vein endothelial cells (HUVECs). Therefore, we propose that SFD can be employed as a novel drug candidate to inhibit the pathophysiological action of VEGF in diseases. Consequently, SFD, which has a molecular structure optimized for binding to HBD, is put forward as a new chemical VEGF inhibitor.

2004 ◽  
Vol 382 (3) ◽  
pp. 933-943 ◽  
Author(s):  
Hironobu YAMASHITA ◽  
Akira GOTO ◽  
Tatsuhiko KADOWAKI ◽  
Yasuo KITAGAWA

We have previously shown that the LG4 (laminin G-like) domain of the laminin α4 chain is responsible for the significantly higher affinity of the α4 chain to heparin than found for other α chains [Yamaguchi, Yamashita, Mori, Okazaki, Nomizu, Beck and Kitagawa (2000) J. Biol. Chem. 275, 29458–29465]; four basic residues were identified to be essential for this activity [Yamashita, Beck and Kitagawa (2004) J. Mol. Biol. 335, 1145–1149]. By creating GST (glutathione S-transferase)-fused LG1, LG2, LG4 and LG5 proteins, we found that only LG4 is active for the adhesion of human HT1080 cells, human umbilical vein endothelial cells and Drosophila haemocytes Kc167 with a half-saturating concentration of 20 μg/ml. Adhesion was counteracted by treatment of the cells with heparin, heparan sulphate and heparitinase I. Upon mutating the four basic residues essential for heparin binding within LG4, the adhesion activity was abolished. Pull-down experiments using glutathione beads/GST-fusion proteins indicate a direct interaction of LG4 with syndecan-4, which might be the major receptor for cell adhesion. Neither the release of glypican-1 by treating human cells with phosphatidylinositol-specific phospholipase C nor targeted knockdown of dally or dally-like protein impaired the cell-adhesion activity. As the LG4–LG5 domain of the α4 chain is cleaved in vivo from the main body of laminin-8 (α4β1γ1), we suggest that the heparan sulphate proteoglycan-binding activity of LG4 is significant in modulating the signalling of Wnt, Decapentaplegic and fibroblast growth factors.


2003 ◽  
Vol 90 (12) ◽  
pp. 1150-1157 ◽  
Author(s):  
Nicole Kaneider ◽  
Ellen Förster ◽  
Birgit Mosheimer ◽  
Daniel Sturn ◽  
Christian Wiedermann

SummaryCirculating endotoxin is elevated in sepsis and plays a role in endothelial dysfunction whereas antithrombin is decreased by virtue of its consumption during complex formation with clotting factors and by proteolytic degradation by granulocyte elastase. Dysfunction of endothelium results in enhanced leukocyte rolling and diapedesis into tissues leading to edema formation and injury. Antithrombin exerts beneficial effects on endothelial function in sepsis. A direct anti-inflammatory action of anti-thrombin in inflammatory cells is exerted via heparan sulfate proteoglycans. In this study, we investigated whether antithrom-bin affects endotoxin-induced adhesion of neutrophils to human endothelial cells in vitro and whether glycosaminoglycans are involved in its signaling. Adhesion of human neutrophils to monolayers of umbilical vein endothelial cells was tested under static conditions. Endothelial cells were pretreated with endotoxin, interleukin-1, heparinase-I, chondroitinase-ABC or anti-syndecan-4-antibody. Endotoxin and interleukin-1 increased neutrophil adherence to human umbilical vein endothelial cells which was inhibited by antithrombin. Concomitant incubation with pentasaccharide abolished this effect of antithrombin. Treatment of endothelial cells with heparinase or chondroitinase led to higher adhesion and prevented effects of antithrom-bin. With antibodies to syndecan-4, enhanced adhesion of neutrophils was observed. As studied by Western blotting, endo-toxin-induced signaling was diminished by antithrombin and the effect was reversible by chondroitinase or heparinase. From our results, we can conclude that endotoxin-induced adhesion of leukocytes to endothelium can be reversed by ligation of syndecan-4 with antithrombin´s heparin-binding site and interferences with stress response signaling events in endothelium.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2363-2369 ◽  
Author(s):  
Ta-Kashi Ito ◽  
Genichiro Ishii ◽  
Seiji Saito ◽  
Keiichi Yano ◽  
Ayuko Hoshino ◽  
...  

AbstractVascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF165 isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.


2002 ◽  
Vol 70 (4) ◽  
pp. 1860-1866 ◽  
Author(s):  
Elisabeth Elass ◽  
Maryse Masson ◽  
Joël Mazurier ◽  
Dominique Legrand

ABSTRACT Interleukin-8 (IL-8), a C-X-C chemokine bound to endothelium proteoglycans, initiates the activation and selective recruitment of leukocytes at inflammatory foci. We demonstrate that human lactoferrin, an antimicrobial lipopolysaccharide (LPS)-binding protein, decreases both IL-8 mRNA and protein expression induced by the complex Escherichia coli 055:B5 LPS/sCD14 in human umbilical vein endothelial cells. The use of recombinant lactoferrins mutated in the LPS-binding sites indicates that this inhibitory effect is mediated by an interaction of lactoferrin with LPS and CD14s that suppresses the endotoxin biological activity. Furthermore, since dimeric IL-8 and lactoferrin are both proteoglycan-binding molecules, the competition between these proteins for heparin binding was investigated. Lactoferrin strongly inhibited the interaction of radiolabeled IL-8 to immobilized heparin, whereas a lactoferrin variant lacking the amino acid residues essential for heparin binding was not inhibitory. Moreover, this process is specific, since serum transferrin, a glycoprotein whose structure is close to that of lactoferrin, did not prevent the interaction of IL-8 with heparin. These results suggest that the anti-inflammatory properties of lactoferrin during septicemia are related, at least in part, to the regulation of IL-8 production and also to the ability of lactoferrin to compete with chemokines for their binding to proteoglycans.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Immacolata Castellano ◽  
Pamela Di Tomo ◽  
Natalia Di Pietro ◽  
Domitilla Mandatori ◽  
Caterina Pipino ◽  
...  

Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor-α-stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1621-1628 ◽  
Author(s):  
Weiqing Zhang ◽  
Richard Swanson ◽  
Gonzalo Izaguirre ◽  
Yan Xiong ◽  
Lester F. Lau ◽  
...  

Abstract The heparin-binding site of antithrombin is shown here to play a crucial role in mediating the antiangiogenic activity of conformationally altered cleaved and latent forms of the serpin. Blocking the heparin-binding site of cleaved or latent antithrombin by complexation with a high-affinity heparin pentasaccharide abolished the serpin's ability to inhibit proliferation, migration, capillary-like tube formation, basic fibroblast growth factor (bFGF) signaling, and perlecan gene expression in bFGF-stimulated human umbilical vein endothelial cells. Mutation of key heparin binding residues, when combined with modifications of Asn-linked carbohydrate chains near the heparin-binding site, also could abrogate the anti-proliferative activity of the cleaved serpin. Surprisingly, mutation of Lys114, which blocks anticoagulant activation of antithrombin by heparin, caused the native protein to acquire antiproliferative activity without the need for conformational change. Together, these results indicate that the heparin-binding site of antithrombin is of crucial importance for mediating the serpin's antiangiogenic activity and that heparin activation of native antithrombin constitutes an antiangiogenic switch that is responsible for turning off the antiangiogenic activity of the native serpin.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244684
Author(s):  
Kazunobu Yagi ◽  
Kazuya Mimura ◽  
Takuji Tomimatsu ◽  
Tatsuya Matsuyama ◽  
Yoko Kawanishi ◽  
...  

Introduction Preeclampsia therapy has not been established, except for the termination of pregnancy. The aim of this study was to identify a potential therapeutic agent from traditional Japanese medicine (Kampo) using the drug repositioning method. Materials and methods We screened a library of 74 Kampo to identify potential drugs for the treatment of preeclampsia. We investigated the angiogenic effects of these drugs using human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assays were performed to measure the levels of placental growth factor (PlGF) in conditioned media treated with 100 μg/mL of each drug. We assessed whether the screened drugs affected cell viability. We performed tube formation assays to evaluate the angiogenic effects of PlGF-inducing drugs. PlGF was measured after administering 10, 50, 100, and 200 μg/mL of the candidate drug in the dose correlation experiment, and at 1, 2, 3, 6, 12, and 24 h in the time course experiment. We also performed tube formation assays with the candidate drug and 100 ng/mL of soluble fms-like tyrosine kinase 1 (sFlt1). PlGF production by the candidate drug was measured in trophoblastic cells (BeWo and HTR-8/SVneo). The Mann-Whitney U test or one-way analyses of variance followed by the Newman-Keuls post-hoc test were performed. P–values < 0.05 were considered significant. Results Of the 7 drugs that induced PlGF, Tokishakuyakusan (TS), Shoseiryuto, and Shofusan did not reduce cell viability. TS significantly facilitated tube formation (P = 0.017). TS administration increased PlGF expression in a dose- and time-dependent manner. TS significantly improved tube formation, which was inhibited by sFlt1 (P = 0.033). TS also increased PlGF production in BeWo (P = 0.001) but not HTR-8/SVneo cells (P = 0.33). Conclusions By using the drug repositioning method in the in vitro screening of the Kampo library, we identified that TS may have a therapeutic potential for preeclampsia. Its newly found mechanisms involve the increase in PlGF production, and improvement of the antiangiogenic state.


Blood ◽  
1995 ◽  
Vol 85 (1) ◽  
pp. 31-37 ◽  
Author(s):  
EL Berg ◽  
C Fromm ◽  
J Melrose ◽  
N Tsurushita

E- and P-selectin are inflammation-induced cell adhesion molecules that mediate leukocyte-endothelial cell and leukocyte-platelet interactions. Monoclonal antibodies (MoAbs) specific for either E-selectin or P- selectin are protective in several animal models of inflammatory disease. To generate an MoAb with broader therapeutic potential, MoAbs that bind to both E- and P-selectin were generated by immunization of mice with mouse pre-B cell lines transfected with human E- and P- selectin. Interestingly, although the only selection criterion was the ability to bind both E- and P-selectin, all three antibodies obtained efficiently block both E- and P-selectin-mediated functions. The inhibited functions include neutrophil or HL-60 cell binding to tumor necrosis factor-alpha-activated human umbilical vein endothelial cells, E- or P-selectin transfectant cell lines, and platelet-HL-60 rosetting. These antibodies, EP-5C7, EP-2C9, and EP-1D8, recognize the same or overlapping epitope within the lectin domains of E- and P-selectin. The data suggest that functionally important epitopes of homologous proteins can be targeted by selecting for antibodies with reactivity toward both proteins. Furthermore, a potent blocking antibody specific for both E- and P-selectin may provide a more effective and broadly useful reagent for treating acute and potentially certain chronic inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document