scholarly journals Procyanidin B2 3″-O-gallate Isolated from Reynoutria elliptica Prevents Glutamate-Induced HT22 Cell Death by Blocking the Accumulation of Intracellular Reactive Oxygen Species

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 412
Author(s):  
Ji Hoon Song ◽  
Sil Kim ◽  
Jae Sik Yu ◽  
Do Hwi Park ◽  
Song-Yi Kim ◽  
...  

In this study, we examined the neuroprotective effects of MeOH extract and bioactive compounds obtained from Reynoutria elliptica seeds using HT22 cells from the murine hippocampal cell line as its underlying molecular basis, which has not yet been elucidated. Our study showed that the MeOH extract of R. elliptica seeds strongly protected HT22 cells from glutamate toxicity. To clarify the responsible compound for the neuroprotective effects, we took an interest in procyanidins of R. elliptica since procyanidins are known to exhibit high structural diversity and neuroprotective activity. To isolate the procyanidins efficiently, a phytochemical investigation of the MeOH extract from R. elliptica seeds using the LC/MS-guided isolation approach was applied, and procyanidin B2 3″-O-gallate (1) was successfully isolated. The structure of 1 was elucidated by analyzing the nuclear magnetic resonance spectroscopic data and LC/MS analysis. The neuroprotective activities of 1 were thoroughly examined using HT22 cells. Compound 1 exhibited a strong antioxidant efficacy and blocked glutamate-mediated increase in the reactive oxygen species (ROS) accumulation. Furthermore, compound 1 significantly inhibited the phosphorylation of extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase, which were increased by glutamate. These findings prove that the extract of R. elliptica seeds containing procyanidin B2 3″-O-gallate, which is a strong neuroprotective component, can be used as a functional food forattenuating and regulating neurological disorders.

1998 ◽  
Vol 141 (6) ◽  
pp. 1423-1432 ◽  
Author(s):  
Shirlee Tan ◽  
Yutaka Sagara ◽  
Yuanbin Liu ◽  
Pamela Maher ◽  
David Schubert

Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5–10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200–400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5–10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1β–converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4138
Author(s):  
Yeon-Jin Cho ◽  
Sun-Hye Choi ◽  
Ra-Mi Lee ◽  
Han-Sung Cho ◽  
Hyewhon Rhim ◽  
...  

Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.


Sign in / Sign up

Export Citation Format

Share Document