scholarly journals Superior Non-Invasive Glucose Sensor Using Bimetallic CuNi Nanospecies Coated Mesoporous Carbon

Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 463
Author(s):  
Ahmed Bahgat Radwan ◽  
Sreedevi Paramparambath ◽  
John-John Cabibihan ◽  
Abdulaziz Khalid Al-Ali ◽  
Peter Kasak ◽  
...  

The assessment of blood glucose levels is necessary for the diagnosis and management of diabetes. The accurate quantification of serum or plasma glucose relies on enzymatic and nonenzymatic methods utilizing electrochemical biosensors. Current research efforts are focused on enhancing the non-invasive detection of glucose in sweat with accuracy, high sensitivity, and stability. In this work, nanostructured mesoporous carbon coupled with glucose oxidase (GOx) increased the direct electron transfer to the electrode surface. A mixed alloy of CuNi nanoparticle-coated mesoporous carbon (CuNi-MC) was synthesized using a hydrothermal process followed by annealing at 700 °C under the flow of argon gas. The prepared catalyst’s crystal structure and morphology were explored using X-ray diffraction and high-resolution transmission electron microscopy. The electrocatalytic activity of the as-prepared catalyst was investigated using cyclic voltammetry (CV) and amperometry. The findings show an excellent response time of 4 s and linear range detection from 0.005 to 0.45 mM with a high electrode sensitivity of 11.7 ± 0.061 mA mM cm−2 in a selective medium.

2021 ◽  
Vol 5 (1) ◽  
pp. 14-25
Author(s):  
Nurul Fadhilah ◽  
Erfiani Erfiani ◽  
Indahwati Indahwati

The calibration method is an alternative method that can be used to analyze the relationship between invasive and non-invasive blood glucose levels. Calibration modeling generally has a large dimension and contains multicolinearities because usually in functional data the number of independent variables (p) is greater than the number of observations (p>n). Both problems can be overcome using Functional Regression (FR) and Functional Principal Component Regression (FPCR). FPCR is based on Principal Component Analysis (PCA). In FPCR, the data is transformed using a polynomial basis before data reduction. This research tried to model the equations of spectral calibration of voltage value excreted by non-invasive blood glucose level monitoring devices to predict blood glucose using FR and FPCR. This study aimed to determine the best calibration model for measuring non-invasive blood glucose levels with the FR and FPCR. The results of this research showed that the FR model had a bigger coefficient determination (R2) value and lower Root Mean Square Error (RMSE) and Root Mean Square Error Prediction (RMSEP) value than the FPCR model, which was 12.9%, 5.417, and 5.727 respectively. Overall, the calibration modeling with the FR model is the best model for estimate blood glucose level compared to the FPCR model.


Author(s):  
Mohsen Askarbioki ◽  
Mojtaba Mortazavi ◽  
Abdolhamid Amooee ◽  
Saeid Kargar ◽  
Mohammad Afkhami-Ardekani ◽  
...  

Objective: Today, there are various non-invasive techniques available for the determination of blood glucose levels. In this study, the level of blood glucose was determined by developing a new device using near-infrared (NIR) wavelength, glass optical waveguide, and the phenomenon of evanescent waves. Materials and Methods: The body's interstitial fluid has made possible the development of new technology to measure the blood glucose. As a result of contacting the fingertip with the body of the borehole rod, where electromagnetic waves are reflected inside, evanescent waves penetrate from the borehole into the skin and are absorbed by the interstitial fluid. The electromagnetic wave rate absorption at the end of the borehole rod is investigated using a detection photodetector, and its relationship to the people's actual blood glucose level. Following precise optimization and design of the glucose monitoring device, a statistical population of 100 participants with a maximum blood glucose concentration of 200 mg/dL was chosen. Before measurements, participants put their index finger for 30 seconds on the device. Results: According to this experimental study, the values measured by the innovative device with Clark grid analysis were clinically acceptable in scales A and B. The Adjusted Coefficient of Determination of the data was estimated to be 0.9064. Conclusion: For future investigations, researchers are recommended to work with a larger statistical population and use error reduction trends to improve the accuracy and expand the range of measurements.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gun Jin Kim ◽  
Kyu Oh Kim

Abstract Micro- and nanofiber (NF) hydrogels fabricated by electrospinning to typically exhibit outstanding high porosity and specific surface area under hydrated conditions. However, the high crystallinity of NFs limits the achievement of transparency via electrospinning. Transparent poly(vinyl alcohol)/β-cyclodextrin polymer NF hydrogels contacted with reverse iontophoresis electrodes were prepared for the development of a non-invasive continuous monitoring biosensor platform of interstitial fluid glucose levels reaching ~ 1 mM. We designed the PVA/BTCA/β-CD/GOx/AuNPs NF hydrogels, which exhibit flexibility, biocompatibility, excellent absorptivity (DI water: 21.9 ± 1.9, PBS: 41.91 ± 3.4), good mechanical properties (dried: 12.1 MPa, wetted: 5.33 MPa), and high enzyme activity of 76.3%. Owing to the unique features of PVA/β-CD/GOx containing AuNPs NF hydrogels, such as high permeability to bio-substrates and rapid electron transfer, our biosensors demonstrate excellent sensing performance with a wide linear range, high sensitivity(47.2 μA mM−1), low sensing limit (0.01 mM), and rapid response time (< 15 s). The results indicate that the PVA/BTCA/β-CD/GOx/AuNPs NF hydrogel patch sensor can measure the glucose concentration in human serum and holds massive potential for future clinical applications.


1980 ◽  
Vol 3 (5) ◽  
pp. 299-304 ◽  
Author(s):  
S.D. Bruck

The control of blood glucose levels in diabetes involving devices are critically reviewed, and the role of blood-contacting biomaterial components analyzed. These include mechanical insulin-delivery systems of the closed-loop type that require an electronic glucose sensor and feedback, and open-loop systems that deliver insulin without a sensor and feedback. Whole pancreatic and islet transplantations, islet encapsulation, and the potential role of polymeric sustained drug delivery systems are discussed. The medical and social impacts of diabetes mellitus are of prime public health concern and of even greater magnitude than those of heart disease in the United States. While future advances in device design, miniaturization, and biometrials technology will significantly add to the arsenal of therapeutic alternatives, devices capable of controlling blood glucose levels ought to be viewed as mere interim phases rather than as final goals of the problem.


2015 ◽  
Vol 8 (2) ◽  
pp. 1244-1260 ◽  
Author(s):  
Anand Thati ◽  
Arunangshu Biswas ◽  
Shubhajit Roy Chowdhury ◽  
Tapan Kumar Sau

2020 ◽  
Author(s):  
Tao Wang ◽  
Dongqin Quan

Abstract Background In this study, we aimed to design a novel oral insulin delivery system, named “oil-soluble” reversed lipid nanoparticles (ORLN), in which a hydrophilic insulin molecule is encapsulated by a phospholipid (PC) shell and dissolved in oil to prevent the enzymatic degradation of insulin. ORLN was characterized by transmission electron microscopy and dynamic light scattering. Results In vitro enzymatic stability studies showed higher concentrations of insulin in cells incubated with ORLN-encapsulated insulin than in those incubated with free insulin solution in artificial intestinal fluid (pH 6.5). The protective effect of ORLN was attributed to its special release behavior and the formulation of the PC shell and oil barrier. Furthermore, an in vivo oral efficacy study confirmed that blood glucose levels were markedly decreased after ORLN administration in both healthy and diabetic mice. In vivo pharmacokinetic results showed that the bioavailability of ORLN-conjugated insulin was approximately 28.7% relative to that of the group subcutaneously administered with an aqueous solution of insulin, indicating enhanced oral absorption. Conclusions In summary, the ORLN system developed here shows promise as a nanocarrier for improving the oral absorption of insulin.


2019 ◽  
Vol 10 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Jan-Hugo Andersen ◽  
Olav Bjerke ◽  
Fatos Blakaj ◽  
Vilde Moe Flugsrud ◽  
Fredrik Alstad Jacobsen ◽  
...  

Abstract Sixteen volunteers each drank 700 ml sugar-containing soft drink during two successive periods and the blood sugar was measured at 10 min intervals together with electrical impedance spectroscopy and near infrared spectroscopy (NIR). A maximum correlation of 0.46 was found for the electrical measurements but no clear separation between low and high blood glucose levels were found in the NIR measurements. The latter was attributed to the experimental design where the NIR probe was removed from the skin between each measurement.


Sign in / Sign up

Export Citation Format

Share Document