scholarly journals Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-Of-Care Applications

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 523
Author(s):  
Chu-Tung Yeh ◽  
Devesh Barshilia ◽  
Chia-Jui Hsieh ◽  
Hsun-Yuan Li ◽  
Wen-Hsin Hsieh ◽  
...  

The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10−8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1625
Author(s):  
Tian Sang ◽  
Honglong Qi ◽  
Xun Wang ◽  
Xin Yin ◽  
Guoqing Li ◽  
...  

Broadband metamaterial absorbers (MAs) are critical for applications of photonic and optoelectronic devices. Despite long-standing efforts on broadband MAs, it has been challenging to achieve ultrabroadband absorption with high absorptivity and omnidirectional characteristics within a comparatively simple and low-cost architecture. Here we design, fabricate, and characterize a novel compact Cr-based MA to achieve ultrabroadband absorption in the visible to near-infrared wavelength region. The Cr-based MA consists of Cr nanorods and Cr substrate sandwiched by three pairs of SiO2/Cr stacks. Both simulated and experimental results show that an average absorption over 93.7% can be achieved in the range of 400–1000 nm. Specifically, the ultrabroadband features result from the co-excitations of localized surface plasmon (LSP) and propagating surface plasmon (PSP) and their synergistic absorption effects, where absorption in the shorter and longer wavelengths are mainly contributed bythe LSP and PSP modes, respectively. The Cr-based MA is very robust to variations of the geometrical parameters, and angle-and polarization-insensitive absorption can be operated well over a large range of anglesunder both transverse magnetic(TM)- and transverse electric (TE)-polarized light illumination.


Nanophotonics ◽  
2015 ◽  
Vol 4 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Chenran Ye ◽  
Ke Liu ◽  
Richard A. Soref ◽  
Volker J. Sorger

Abstract We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.


2012 ◽  
Author(s):  
Gun Yong Sung ◽  
Wan-Joong Kim ◽  
Hyunsung Ko ◽  
Bong K. Kim ◽  
Kyung-Hyun Kim ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed A. Mousa ◽  
Nadia H. Rafat ◽  
Amr A. E. Saleh

Abstract Raman identification is an instrumental tool with a broad range of applications, yet current spectroscopy approaches fall short in facilitating practical and scalable Raman identification platforms. In this work, we introduce a spectrometerless Raman identification approach that utilizes guided-mode resonance filters. Unlike arrayed narrowband-filters spectrometer, we tailor the transmission characteristics of each filter to match the Raman signature of a given target. Hence, instantaneous Raman identification could be directly achieved at the hardware level with no spectral data post-processing. The filters consist of a metasurface grating encapsulated between two identical distributed Bragg reflectors and are characterized by transmission peaks line-widths narrower than 0.01 nm and transmission efficiency exceeding 98%. We develop a rigorous design methodology to customize the filters’ characteristics such that the maximum optical transmission through a given filter is only attained when exposed to the Raman scattering from its matched target. To illustrate the potential of our approach, we theoretically investigate the identification of four different saccharides as well as the classification of two antibiotic-susceptible and resistant strains of Staphylococcus aureus. We show that our proposed approach can accurately identify these targets. Our work lays the foundation for a new-generation of scalable, compact, and cost-effective instant Raman identification platforms that can be adopted in countless applications from wearables and point-of-care diagnostics to in-line quality control in food and pharmaceutical industries.


2012 ◽  
Vol 26 (11) ◽  
pp. 1250070 ◽  
Author(s):  
HENGYI LI ◽  
XIANGANG LUO ◽  
ZHEN GUO ◽  
KUNHUA WEN ◽  
LIANSAN YAN

Plasmonic waveplates with enhanced transmission can be achieved in the proposed structure with a periodic array of nanorectangles. Based on the model of nanoslits, both the transverse electric (TE) and transverse magnetic (TM) waves can be transmitted through the nanorectangles, enhancing the transmission of the incident polarized light. Simulation results show that the transmission ratio and phase shift of TE and TM waves can be manipulated by the nanorectangles structures, enabling plasmonic waveplates with enhanced transmission.


Sign in / Sign up

Export Citation Format

Share Document