scholarly journals Biological Effects of C60 Fullerene Revealed with Bacterial Biosensor—Toxic or Rather Antioxidant?

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 81 ◽  
Author(s):  
Sergey Emelyantsev ◽  
Evgeniya Prazdnova ◽  
Vladimir Chistyakov ◽  
Igor Alperovich

Nanoparticles have been attracting growing interest for both their antioxidant and toxic effects. Their exact action on cells strongly depends on many factors, including experimental conditions, preparation, and solvents used, which have contributed to the confusion regarding their safety and possible health benefits. In order to clarify the biological effects of the most abundant fullerene C60, its impact on the Escherichia coli model has been studied. The main question was if C60 would have any antioxidant influence on the cell and, if yes, whether and to which extent it would be concentration-dependent. An oxidative stress induced by adding hydrogen peroxide was measured with an E. coli MG1655 pKatG-lux strain sensor, with its time evolution being recorded in the presence of fullerene C60 suspensions of different concentrations. Optimal conditions for the fullerene C60 solubilization in TWEEN 80 2% aqueous solution, together with resulting aggregate sizes, were determined. Results obtained for the bacterial model can be extrapolated on eukaryote mitochondria. The ability of C60 to penetrate through biological membranes, conduct protons, and interact with free radicals is likely responsible for its protective effect detected for E. coli. Thus, fullerene can be considered as a mitochondria-targeted antioxidant, worth further researching as a prospective component of novel medications.

1980 ◽  
Vol 44 (02) ◽  
pp. 111-114 ◽  
Author(s):  
Hiroshi Takayama ◽  
Minoru Okuma ◽  
Haruto Uchino

SummaryTo develop a simple method for estimation of platelet lipoxygenase (PLO) and cyclo-oxygenase (PCO) pathways, the arachidonic acid (AA) metabolism of human platelet was investigated under various experimental conditions by the use of the thiobarbituric acid (TBA) reaction and a radioisotope technique. A TBA-reactive substance different from malondialdehyde (MDA) via PCO pathway was detected and shown to be derived from the PLO pathway. Since the optimal pH and time course of its formation were different from those of MDA formation via PCO pathway, PLO and PCO pathways were estimated by quantitating the TBA-reactive substances produced by the incubation of AA either with aspirin-treated platelets or with untreated ones, respectively, each under optimal conditions. Normal values expressed in terms of nmol MDA/108 platelets were 1.17±0.34 (M±SD, n = 31) and 0.79±0.15 (n = 31) for PLO and PCO pathways, respectively.


2002 ◽  
Vol 68 (9) ◽  
pp. 4604-4612 ◽  
Author(s):  
Catherine A. Axtell ◽  
Gwyn A. Beattie

ABSTRACT We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water deprivation caused by the presence of NaCl, Na2SO4, KCl, or polyethylene glycol (molecular weight, 8000). The fusion was induced to a detectable level by NaCl concentrations of as low as 10 mM in all three bacterial species. Water deprivation induced proU-gfp expression in both planktonic and surface-associated cells; however, it induced a higher level of expression in the surface-associated cells. Following the introduction of P. agglomerans biosensor cells onto bean leaves, the cells detected a significant decrease in water availability within only 5 min. After 30 min, the populations were exposed, on average, to a water potential equivalent to that imposed by approximately 55 mM NaCl. These results demonstrate the effectiveness of a proU-gfp-based biosensor for evaluating water availability on leaves. Furthermore, the inducibility of proU-gfp in multiple bacterial species illustrates the potential for tailoring proU-gfp-based biosensors to specific habitats.


2007 ◽  
Vol 1064 ◽  
Author(s):  
Somesree GhoshMitra ◽  
Tong Cai ◽  
Santaneel Ghosh ◽  
Arup Neogi ◽  
Zhibing Hu ◽  
...  

ABSTRACTQuantum dots (QDs) are now used extensively for labeling in biomedical research due to their unique photoluminescence behavior, involving size-tunable emission color, a narrow and symmetric emission profile and a broad excitation range [1]. Uncoated QDs made of CdTe core are toxic to cells because of release of Cd2+ ions into the cellular environment. This problem can be partially solved by encapsulating QDs with polymers, like poly(N-isopropylacrylamide) (PNIPAM) or poly(ethylene glycol) (PEG). Based on biological compatibility, fast response as well as pH, temperature and magnetic field dependent swelling properties, hydrogel nanospheres has become carriers of drugs, fluorescence labels, magnetic particles for hyperthermia applications and particles that have strong optical absorption profiles for optical excitation. The toxicity of uncoated QDs are known; however, there have been a very limited number of studies specially designed to assess thoroughly the toxicity of nanosphere encapsulated QDs against QD density and dosing level.In this work, we present preliminary studies of biological effects of a novel QD based nanomaterial system on Escherichia coli (E. coli) bacteria. Cadmium chalcogenide QDs provide the most attractive fluorescence labels in comparison with routine dyes or metal complexes. Nanospheres on the other hand are the most commonly used carriers of fluorescence labels for fluorescence detection. The integration of fluorescent QDs in nanospheres therefore provides a new generation of fluorescence markers for biological assays. Hydrogels based on PNIPAM is a well known thermoresponsive polymer that undergoes a volume phase transition across the low critical solution (LCST) [2]. Therefore, the inherent temperature-sensitive swelling properties of PNIPAM offer the potentiality to control QD density within the nanospheres. In the present work, E. coli growth was monitored as E. coli served as a representation of how cells might respond in the presence of hydrogel encapsulated QDs in their growth environment. The present work describes the successful encapsulation of CdTe QDs in PNIPAM gel network. Microgel encapsulated QDs were synthesized by first preparing PNIPAM microspheres with cystaminebisacrylamide as a crosslinker and CdTe QDs capped with a stabilizer. The CdTe QDs were bonded into PNIPAM microgels through the replacement of CdTe's stabilizer inside PNIPAM microspheres. Growth curves were generated for E. coli growing in 20 mL of LB media containing hydrogel encapsulated QD nanospheres (400 nm diameter) at relatively higher (0.5mg/mL) and lower (0.01mg/mL) concentration of solution. From the growth curves, there was no evidence at lower concentration (0.01mg/mL) that the hydrogel encapsulated QDs prevent the microbial cells from growing but at higher concentration (0.5mg/mL), microbial growth was inhibited. Transmission Electron Microscopy (TEM) was used to characterize QD size and density inside the hydrogel nanospheres. Scanning Electron Microscopy (SEM) was used to observe size and morphology of the hydrogel particles. Further investigation is going on cell growth response at different QD density and to evaluate the limiting hydrogel concentration for different QD densities.


1990 ◽  
Vol 269 (3) ◽  
pp. 709-715 ◽  
Author(s):  
H Hayashi ◽  
M K Owada ◽  
S Sonobe ◽  
K Domae ◽  
T Yamanouchi ◽  
...  

Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.


2021 ◽  
Vol 24 (04) ◽  
pp. 413-418
Author(s):  
O.V. Kovalchuk ◽  
◽  
I.P. Studenyak ◽  
T.M. Kovalchuk ◽  
E.A. Ayryan ◽  
...  

At the temperature 293 K, the influence of two types of nanoimpurities (carbon multiwall nanotubes and C60 fullerene) both separately and together on the dielectric properties of Shell oil transformer oil has been studied. It has been shown that these impurities do not significantly effect on the value of the dielectric permittivity of Shell oil, but more significantly increase its conductivity. It has been found that in the presence of nanotubes inside Shell oil, the dependence of its electrical conductivity on the fullerene concentration is nonmonotonic. The samples with the fullerene concentration 100 ppm have the highest conductivity. At the fullerene concentration 300 ppm, the conductivity of Shell oil with the impurities of carbon nanotube and C60 fullerene becomes almost equal to the electrical conductivity of Shell oil only with the impurities of carbon nanotubes. It has been suggested that C60 fullerene can be used to reduce the electrical conductivity of Shell oil with magnetic nanoparticles required to increase the cooling efficiency of transformers under the action of their own magnetic field.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 450
Author(s):  
Kazuhira Miwa ◽  
Shinobu Aoyagi ◽  
Takahiro Sasamori ◽  
Shogo Morisako ◽  
Hiroshi Ueno ◽  
...  

The reduction of fullerene (C60) with sodium dispersion in the presence of an excess amount of dipropyl sulfate was found to yield highly propylated fullerene, C60(nC3H7)n (max. n = 24), and C60(nC3H7)20 was predominantly generated as determined by mass spectroscopy.


2009 ◽  
Vol 83 (1) ◽  
pp. 59-62 ◽  
Author(s):  
K. N. Semenov ◽  
N. A. Charykov ◽  
O. V. Arapov ◽  
N. I. Alekseev ◽  
M. A. Trofimova
Keyword(s):  

RADIOISOTOPES ◽  
1968 ◽  
Vol 17 (5) ◽  
pp. 203-207
Author(s):  
Yoiti TITANI ◽  
Yutaka KATSUBE

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 540
Author(s):  
Zainab Mussa ◽  
Fouad Al-Qaim ◽  
Ali Yuzir ◽  
Hirofumi Hara ◽  
Shamila Azman ◽  
...  

This paper describes an electrochemical treatment process of hydrochlorothiazide (HDZ) under different conditions such as initial concentration, sodium chloride and applied voltage. In this present study, HDZ was treated by electrochemical oxidation process using graphite-PVC composite electrode as anode and Platinum (Pt) as cathode. All results were analyzed using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS). It was found that at high applied voltages, and high amounts of NaCl, the electrochemical treatment process was more efficient. The removal% of HDZ was 92% at 5 V after 60 min. From the obtained results, the electrochemical oxidation process of HDZ followed pseudo first order with rate constant values ranged between 0.0009 and 0.0502 min−1, depending on the experimental conditions. Energy consumption was also considered in this study, it was ranged between 0.9058 and 5.56 Wh/mg using 0.5, 0.3 and 0.1 g NaCl within interval times of (10, 20, 30, 40, 50, 60, 70, and 80 min). Five chlorinated and one non-chlorinated by-products were formed and analyzed in negative ionization (NI) mode during the electrochemical process. Due to the strong oxidizing potential of the chlorine (Cl2) and hypochlorite ion (ClO−), HDZ and its by-products were removed after 140 min. Furthermore, a novel synthesis of chlorothiaizde as one of the new by-products was reported in this present study. Toxicity was impacted by the formation of the by-products, especially at 20 min. The inhibition percentage (I%) of E. coli bacteria was decreased to be the lowest value after 140 min.


Sign in / Sign up

Export Citation Format

Share Document