scholarly journals In-Field Validation of an Inertial Sensor-Based System for Movement Analysis and Classification in Ski Mountaineering

Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 885 ◽  
Author(s):  
Jules Gellaerts ◽  
Evgeny Bogdanov ◽  
Farzin Dadashi ◽  
Benoit Mariani
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 141 ◽  
Author(s):  
Rob Van der Straaten ◽  
Amber K. B. D. Bruijnes ◽  
Benedicte Vanwanseele ◽  
Ilse Jonkers ◽  
Liesbet De Baets ◽  
...  

This study evaluates the reliability and agreement of the 3D range of motion (ROM) of trunk and lower limb joints, measured by inertial measurement units (MVN BIOMECH Awinda, Xsens Technologies), during a single leg squat (SLS) and sit to stand (STS) task. Furthermore, distinction was made between movement phases, to discuss the reliability and agreement for different phases of both movement tasks. Twenty healthy participants were measured on two testing days. On day one, measurements were conducted by two operators to determine the within-session and between-operator reliability and agreement. On day two, measurements were conducted by the same operator, to determine the between-session reliability and agreement. The SLS task had lower within-session reliability and agreement compared with between-session and between-operator reliability and agreement. The reliability and agreement of the hip, knee, and ankle ROM in the sagittal plane were good for both phases of the SLS task. For both phases of STS task, within-session reliability and agreement were good, and between-session and between-operator reliability and agreement were lower in all planes. As both tasks are physically demanding, differences may be explained by inconsistent movement strategies. These results show that inertial sensor systems show promise for use in further research to investigate (mal)adaptive movement strategies.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 82 ◽  
Author(s):  
Udeni Jayasinghe ◽  
William S. Harwin ◽  
Faustina Hwang

Inertial sensors are a useful instrument for long term monitoring in healthcare. In many cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing multiple devices every day, in approximately the same location, with less likelihood of incorrect sensor orientation. To facilitate this, the current work investigates the consequences of attaching lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these clothing sensors compare with similarly placed body worn sensors, with additional consideration of the resulting effects on activity recognition. This study compares the similarity between the two signals (body worn and clothing), collected from three different clothing types (slacks, pencil skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus) by calculating correlation coefficients for each sensor pair. Even though the two data streams are clearly different from each other, the results indicate that there is good potential of achieving high classification accuracy when using inertial sensors in clothing.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 876 ◽  
Author(s):  
Liesbet De Baets ◽  
Stefanie Vanbrabant ◽  
Carl Dierickx ◽  
Rob van der Straaten ◽  
Annick Timmermans

Adhesive capsulitis (AC) is a glenohumeral (GH) joint condition, characterized by decreased GH joint range of motion (ROM) and compensatory ROM in the elbow and scapulothoracic (ST) joint. To evaluate AC progression in clinical settings, objective movement analysis by available systems would be valuable. This study aimed to assess within-session and intra- and inter-operator reliability/agreement of such a motion capture system. The MVN-Awinda® system from Xsens Technologies (Enschede, The Netherlands) was used to assess ST, GH, and elbow ROM during four tasks (GH external rotation, combing hair, grasping a seatbelt, placing a cup on a shelf) in 10 AC patients (mean age = 54 (±6), 7 females), on two test occasions (accompanied by different operators on second occasion). Standard error of measurements (SEMs) were below 1.5° for ST pro-retraction and 4.6° for GH in-external rotation during GH external rotation; below 6.6° for ST tilt, 6.4° for GH flexion-extension, 7.1° for elbow flexion-extension during combing hair; below 4.4° for GH ab-adduction, 13° for GH in-external rotation, 6.8° for elbow flexion-extension during grasping the seatbelt; below 11° for all ST and GH joint rotations during placing a cup on a shelf. Therefore, to evaluate AC progression, inertial sensors systems can be applied during the execution of functional tasks.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2054 ◽  
Author(s):  
Veronica Cimolin ◽  
Nicola Cau ◽  
Alessandro Sartorio ◽  
Paolo Capodaglio ◽  
Manuela Galli ◽  
...  

Abnormal excess or lack of body mass can influence gait patterns, but in some cases such differences are subtle and not easy to detect, even with quantitative techniques for movement analysis. In these situations, the study of trunk accelerations may represent an effective way to detecting gait anomalies in terms of symmetry through the calculation of Harmonic Ratio (HR), a parameter obtained by processing trunk accelerations in the frequency domain. In the present study we used this technique to assess the existence of differences in HR during gait in a cohort of 75 healthy children and early adolescents (aged 7–14 years) stratified into 3 equally-sized age and gender-matched groups (Underweight: UW; Normal Weight: NW; Overweight: OW). The accelerometric signal, acquired using a single wearable inertial sensor, was processed to calculate stride length, speed, cadence and HR in antero-posterior, vertical and medio-lateral directions. No differences in spatio-temporal parameters were found among groups, while the HR in the medio-lateral direction was found significantly lower in UW children, while OW exhibited the highest values. On the basis of the results obtained, HR appears capable of discriminating gait symmetry in children with different body mass even when conventional gait parameters are unchanged.


2020 ◽  
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Abstract Background: Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which harm the independence to execute different Activities of Daily Living (ADL). From the fundamental role of the ankle in walking, Active Ankle-Foot Orthoses (AAFOs) have been developed to enhance the users' gait patterns, and hence, their quality of life.Methods: Ten patients who suffered stroke used the actuation system of the T-FLEX orthosis triggered by an inertial sensor on the foot tip. The VICON motion capture system recorded the users' kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. Results: The biomechanical assessment exhibited changes in the range of motion of the lower joints for $70\%$ of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70\% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30\% of the paretic limbs, where one volunteer increased this index in 14\%. The spatiotemporal parameters did not show significant variations between modalities, although users' cadence had a decrease. Lastly, the satisfaction with the device was positive, being the comfort the most users-selected aspect.Conclusions: This article presented the assessment of the T-FLEX actuation system in people who suffered stroke. Biomechanical results showed improvement in the ankle kinematic and variation in the other joints. In general terms, GDI did not exhibit significant changes, and Movement Analysis Profile (MAP) registered the main movements altered by the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients that includes a stage of training.Trial registration: This study was registered as Preliminary Biomechanical and Usability Study of an Active Ankle-Foot Orthosis for Stroke Survivors on 30 January 2020 in Clinical Trials with the identi er No NCT04249349 (available at https://clinicaltrials.gov/ct2/show/NCT04249349).


2018 ◽  
Vol 39 (10) ◽  
pp. 802-808 ◽  
Author(s):  
Rhys Spangler ◽  
Timo Rantalainen ◽  
Paul Gastin ◽  
Daniel Wundersitz

AbstractConsidering the large and repetitive loads associated with jumping in team sports, automatic detection and quantification of jumping may show promise in reducing injury risks. The aim of this study was to validate commercially available inertial-movement analysis software to detect and quantify jumping in team sports. In addition, the test-retest reliability of the software to quantify jumping was assessed. Seventy-six healthy male participants completed a team sport circuit six times containing seven common movements (including three countermovement and two single-leg jumps) whilst wearing an inertial sensor (Catapult Sports, Australia). Jump detection accuracy was assessed by comparing the known number of jumps to the number recorded by the inertial movement analysis software. A further 27 participants separately performed countermovement and single-leg jumps at 33%, 66% and 100% of maximal jump height over two sessions. Jump height quantification accuracy was assessed by comparing criterion three-dimensional motion analysis-derived heights to that recorded by the inertial movement analysis software. Test-retest reliability was assessed by comparing recorded jump heights between both testing sessions. Catapult’s inertial movement analysis software displayed excellent jump detection accuracy (96.9%) and test-retest jump height quantification reliability (ICC: 0.86 [countermovement jump], 0.88 [single-leg jump]). However, significant mean bias (–2.74 cm [95% LoA –10.44 – 4.96]) was observed for jump height quantification. Overall, Catapult’s inertial movement analysis software appears to be a suitable method of automatically detecting jumping in team sports, and although reliable, caution is advised when using the IMA software to quantify jump height.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2638 ◽  
Author(s):  
Rob van der Straaten ◽  
Annick Timmermans ◽  
Amber K. B. D. Bruijnes ◽  
Benedicte Vanwanseele ◽  
Ilse Jonkers ◽  
...  

This study assesses the reliability and agreement of trunk and lower limb joints’ 3D kinematics, measured by inertial measurement units, during walking and more demanding movement tasks. For data analysis, tasks were divided in open and closed chain phases. Twenty healthy participants were included. On day one, measurements were conducted by “Operator 1” and “Operator 2” to determine between-operator reliability/agreement. On day two, the measurements were conducted by Operator 1, in order to determine within-session reliability/agreement. Furthermore, between-session reliability/agreement was assessed based on data from Operator 1, captured on day one and two. Within-session reliability/agreement was high, and better than between-session and between-operator results for all tasks. The results for walking were generally better than for other movement tasks, for all joint kinematics, and for both open and closed chain phases. Only for the ab/adduction and flexion/extension angles during forward and sideward lunge, reliability and agreement results were comparable to walking, for both the open and closed chain phases. The fact that lunges show similar reliability results than walking for open and closed chain phases, but require more motor control to perform, indicates that the performance of lunges might be interesting to use in further research aiming to identify kinematic differences between populations.


1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


Sign in / Sign up

Export Citation Format

Share Document