scholarly journals Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk

2021 ◽  
Vol 11 (7) ◽  
pp. 905
Author(s):  
Punnag Saha ◽  
Peter T. Skidmore ◽  
LaRinda A. Holland ◽  
Ayan Mondal ◽  
Dipro Bose ◽  
...  

Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut–Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut–Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut–Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.

2020 ◽  
Vol 14 ◽  
Author(s):  
Jun Gao ◽  
Fuyi Xu ◽  
Athena Starlard-Davenport ◽  
Diane B. Miller ◽  
James P. O’Callaghan ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 119675
Author(s):  
Mariana Angoa-Pérez ◽  
Branislava Zagorac ◽  
Dina M. Francescutti ◽  
Kevin R. Theis ◽  
Donald M. Kuhn

Life Sciences ◽  
2021 ◽  
pp. 119707
Author(s):  
Kyle A. Brown ◽  
Jessica M. Carpenter ◽  
Collin J. Preston ◽  
Helaina D. Ludwig ◽  
Kendall B. Clay ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


2019 ◽  
Vol 70 ◽  
pp. 26-32 ◽  
Author(s):  
Lindsay T. Michalovicz ◽  
Alicia R. Locker ◽  
Kimberly A. Kelly ◽  
Julie V. Miller ◽  
Zachary Barnes ◽  
...  

2019 ◽  
Author(s):  
Jillian M. Richmond ◽  
Dhrumil Patel ◽  
Tomoya Watanabe ◽  
Colton J. Garelli ◽  
Madhuri Garg ◽  
...  

AbstractMorphea, or localized scleroderma, is characterized by an inflammatory phase followed by cutaneous fibrosis, which may lead to disfigurement and/or disability. Previous work from our group showed that the CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in lesional skin of morphea patients. Here, we used an acute inflammatory and fibrotic bleomycin mouse model of morphea to examine the role of the CXCR3 chemokine axis in pathogenesis. We first characterized which cells produce the CXCR3 ligands in the skin using the Reporter of Expression of CXCR3 ligands mouse (REX3). We found that fibroblasts contribute the bulk of CXCL9 and CXCL10, whereas endothelial cells are key dual chemokine producers. Macrophages, which have high MFI of chemokine expression, upregulated CXCL9 production over time, fibroblasts CXCL10 production, and T cells dual chemokine expression. To determine whether bleomycin treatment could directly induce expression of these chemokines, we treated cultured REX3 mouse dermis monolayers in vitro with bleomycin or IFNγ with TNF and found that bleomycin could induce low amounts of CXCL9 directly in fibroblasts, whereas the cytokines were required for optimal CXCL9 and CXCL10 production. To determine whether these chemokines are mechanistically involved in pathogenesis, we induced fibrosis in CXCL9, CXCL10, or CXCR3 deficient mice and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9, but not CXCL10, to cultured mouse fibroblasts induces collagen 1a1 mRNA expression, indicating the chemokine itself can contribute to fibrosis. Taken together, our studies provide evidence that acute intradermal bleomycin administration in mice can model inflammatory morphea, and that CXCL9 and its receptor CXCR3 are mechanistically involved in pathogenesis.One Sentence SummaryCXCL9 drives acute morphea pathogenesis in mice.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


2020 ◽  
Vol 105 (5) ◽  
pp. 1316-1326
Author(s):  
Yong Song ◽  
Ren-Wei Su ◽  
Niraj R Joshi ◽  
Tae Hoon Kim ◽  
Bruce A Lessey ◽  
...  

Abstract Context NOTCH signaling is activated in endometriotic lesions, but the exact mechanisms remains unclear. IL-6, which is increased in the peritoneal fluid of women with endometriosis, induces NOTCH1 through E-proteins including E2A and HEB in cancer. Objective To study the role of E-proteins in inducing NOTCH1 expression under the regulation of IL-6 in endometriosis. Setting and Design The expression of E-proteins and NOTCH1 was first investigated in endometrium of women with endometriosis and the baboon model of endometriosis. Regulation of E-proteins and NOTCH1 expression was examined after IL-6 stimulation and siRNA mediated inhibition of E2A or/and HEB in human endometriotic epithelial cells (12Z) in vitro, and subsequently following IL-6 treatment in the mouse model of endometriosis in vivo. Results E2A, HEB, and NOTCH1 were significantly upregulated in glandular epithelium (GE) of ectopic endometrium compared to eutopic endometrium in both women and the baboon model. IL-6 treatment upregulated the expression of NOTCH1 together with E2A and HEB in 12Z cells. Small interfering RNA inhibition of E2A and HEB or HEB alone decreased NOTCH1 expression. Binding efficiency of both E2A and HEB was significantly higher at the binding sites on the human NOTCH1 promoter after IL-6 treatment. Finally, IL-6 treatment resulted in a significantly increased number of endometriotic lesions along with increased expression of E2A, HEB, and NOTCH1 in GE of the lesions compared with the vehicle group in an endometriosis mouse model. Conclusions IL-6 induced NOTCH1 expression is mediated by E-proteins in the ectopic GE cells, which may promote endometriotic lesion development.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


Sign in / Sign up

Export Citation Format

Share Document