scholarly journals Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis

2021 ◽  
Vol 11 (8) ◽  
pp. 1005
Author(s):  
Georgina Cano ◽  
Shelby L. Hernan ◽  
Alan F. Sved

The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal’s energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.

1996 ◽  
Vol 108 (5) ◽  
pp. 393-404 ◽  
Author(s):  
P A Pappone ◽  
S C Lee

Stimulation of brown adipocytes by their sympathetic innervation plays a major role in body energy homeostasis by regulating the energy-wasting activity of the tissue. The norepinephrine released by sympathetic activity acts on adrenergic receptors to activate a variety of metabolic and membrane responses. Since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. We find that micromolar concentrations of extracellular ATP initiates profound changes in the membrane trafficking of brown adipocytes. ATP elicited substantial increases in total cell membrane capacitance, averaging approximately 30% over basal levels and occurring on a time scale of seconds to minutes. The membrane capacitance increase showed an agonist sensitivity of 2-methylthio-ATP > or = ATP > ADP > > adenosine, consistent with mediation by a P2r type purinergic receptor. Membrane capacitance increases were not seen when cytosolic calcium was increased by adrenergic stimulation, and capacitance responses to ATP were similar in the presence and absence of extracellular calcium. These results indicate that increases in cytosolic calcium alone do not mediate the membrane response to ATP. Photometric assessment of surface-accessible membrane using the dye FM1-43 showed that ATP caused an approximate doubling of the amount of membrane actively trafficking with the cell surface. The discrepancy in the magnitudes of the capacitance and fluorescence changes suggests that ATP both activates exocytosis and alters other aspects of membrane handling. These findings suggest that secretion, mobilization of membrane transporters, and/or surface membrane expression of receptors may be regulated in brown adipocytes by P2r purinergic receptor activity.


Author(s):  
Dr. I. D. Chaurasia ◽  
Dr. Avais Ahmed Khan ◽  
Dr. Neeraj Mane ◽  
Dr. Prateek Malpani ◽  
Dr. M. C. Songara

Overview:  Infants experience stressors. Stress responses in infants include physiological responses (HR and oxygen saturation) and behavioral responses (behavioral state, motor activity, and signs of behavioral distress). Modulation of the stress response in infants may reduce energy demands and enhance recovery. The characteristics of auditory stimulation provided by music differ from those of other types of auditory stimulation. The infants respond differently to music than to other random noises. This study was carried out to examine the effects of different types of music on vital signs of infants. Methodology: Thirty infants were included in the study. They were divided into two groups. Low and High pitched music was used with for two individual groups. The immediate effect was assessed through pre and post recordings for Heart rate, Reapiratory rate and O2 saturation level. Results: There was statistically significant change in Heart Rate, Respiratory Rate and O2 saturation individually. While comparing post data, except Heart Rate there was no significant difference found with both types of music. Conclusion: Low pitched music has better immediate effect than high pitched music Key words: High pitched music, Low pitched music, Infants


2018 ◽  
Vol 64 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Agatha A van der Klaauw

Abstract BACKGROUND The global rise in the prevalence of obesity and associated comorbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. CONTENT Studies in rodents with the use of global and targeted gene disruption, and mapping of neurocircuitry by using optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) have greatly advanced our understanding of the neural control of body weight. In conjunction with analytical chemistry techniques involving classical immunoassays and mass spectrometry, many neuropeptides that are key to energy homeostasis have been identified. The actions of neuropeptides are diverse, from paracrine modulation of local neurotransmission to hormonal control of distant target organs. SUMMARY Multiple hormones, such as the adipocyte-derived leptin, insulin, and gut hormones, and nutrients signal peripheral energy state to the central nervous system. Neurons in distinct areas of the hypothalamus and brainstem integrate and translate this information by both direct inhibitory/excitatory projections and anorexigenic or orexigenic neuropeptides into actions on food intake and energy expenditure. The importance of these neuropeptides in human energy balance is most powerfully illustrated by genetic forms of obesity that involve neuropeptides such as melanocortin-4-receptor (MC4R) deficiency. Drugs that mimic the actions of neuropeptides are being tested for the treatment of obesity. Successful therapeutic strategies in obesity will require in-depth knowledge of the neuronal circuits they are working in, the downstream targets, and potential compensatory mechanisms.


2015 ◽  
Vol 224 (3) ◽  
pp. R139-R159 ◽  
Author(s):  
Patricia Joseph-Bravo ◽  
Lorraine Jaimes-Hoy ◽  
Jean-Louis Charli

Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo–pituitary–thyroid (HPT) and hypothalamo–pituitary–adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription ofTrhin vivoandin vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.


2017 ◽  
Vol 118 ◽  
pp. 26-37 ◽  
Author(s):  
Nóra Füredi ◽  
Ákos Nagy ◽  
Alexandra Mikó ◽  
Gergely Berta ◽  
Tamás Kozicz ◽  
...  

2013 ◽  
Vol 110 (17) ◽  
pp. E1631-E1640 ◽  
Author(s):  
R. Zheng ◽  
L. Yang ◽  
M. A. Sikorski ◽  
L. C. Enns ◽  
T. A. Czyzyk ◽  
...  

2007 ◽  
Vol 292 (4) ◽  
pp. R1532-R1541 ◽  
Author(s):  
T.-K. Lee ◽  
J. H. Lois ◽  
J. H. Troupe ◽  
T. D. Wilson ◽  
B. J. Yates

Despite considerable interest in the neural mechanisms that regulate muscle blood flow, the descending pathways that control sympathetic outflow to skeletal muscles are not adequately understood. The present study mapped these pathways through the transneuronal transport of two recombinant strains of pseudorabies virus (PRV) injected into the gastrocnemius muscles in the left and right hindlimbs of rats: PRV-152 and PRV-BaBlu. To prevent PRV from being transmitted to the brain stem via motor circuitry, a spinal transection was performed just below the L2 level. Infected neurons were observed bilaterally in all of the areas of the brain that have previously been shown to contribute to regulating sympathetic outflow: the medullary raphe nuclei, rostral ventrolateral medulla (RVLM), rostral ventromedial medulla, A5 adrenergic cell group region, locus coeruleus, nucleus subcoeruleus, and the paraventricular nucleus of the hypothalamus. The RVLM, the brain stem region typically considered to play the largest role in regulating muscle blood flow, contained neurons infected following the shortest postinoculation survival times. Approximately half of the infected RVLM neurons were immunopositive for tyrosine hydroxylase, indicating that they were catecholaminergic. Many (47%) of the RVLM neurons were dually infected by the recombinants of PRV injected into the left and right hindlimb, suggesting that the central nervous system has a limited capacity to independently regulate blood flow to left and right hindlimb muscles.


2021 ◽  
Vol 245 ◽  
pp. 01025
Author(s):  
Han Wang ◽  
Dali Yu ◽  
Chi Xu ◽  
Muhammad Salman Khan ◽  
Yunqing Bai

Small Modular Lead-based Reactor (SMLR) has generated great interest in academic research all around the world due to its good safety characteristics and relatively high core outlet temperature. In this paper, a Combined Cooling Heating and Power (CCHP) system with usage of absorption heat pump, which couples with a SMLR, was proposed to fulfill the energy demands in remote areas. Thermodynamic analysis was implemented to improve the performance of the CCHP system based on SMLR. To meet the remote areas’ energy needs, the main parameters and mass flow rate of a 35 MWth SMLR design were analyzed. The SMLR CCHP with absorption heat pump system can provide electric power 12.5MWe, heating 9.5MWh, and cooling 2.54MWc. The total energy utilization efficiency of the system can be 69.12 %. This work can provide a reference in the design and optimization of the CCHP system to meet the energy demands in the remote areas.


Author(s):  
Ian Huck ◽  
E. Matthew Morris ◽  
John Thyfault ◽  
Udayan Apte

Hepatocyte Nuclear Factor 4 alpha (HNF4α) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4α in metabolism, its overall role in whole body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4α deletion (HNF4α-KO) in mice on whole body energy expenditure (EE) and substrate utilization in fed, fasted, and high fat diet (HFD) conditions. HNF4α-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4α-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4α-KO mice were able to upregulate lipid oxidation during HFD suggesting that their metabolic flexibility was intact. However, only hepatocyte specific HNF4α-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4α-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic Beta-oxidation in HNF4α-KO livers across all feeding conditions. Together, our data suggest deletion of hepatic HNF4α increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole body energy expenditure. These data clarify the role of hepatic HNF4α on systemic metabolism and energy homeostasis.


2019 ◽  
Vol 8 (4) ◽  
pp. 1070-1074

Energy is an important resource in the field of Mobile Ad hoc Networks (MANETs). Limited energy at a particular node may lead to failure of a route in MANETs. The energy is consumed each and every time a node participates in transmission and forwarding of the packets. Controlling the number of packets to be forwarded through a particular node i.e. controlling participation of a node as an intermediate node may improve the overall energy state of the network. Ant colony Based Energy Efficient Routing Protocol (ACBEEMR) works on this principal and controls the number of packets to be forwarded through a particular node. For achieving this goal, it uses a threshold value known as energy factor. ACBEEMR utilizes the benefits of Ant Colony Optimization along with the feature of being an energy efficient protocol. In this paper, a modified variant of ACBEEMR i.e. MACBEEMR with some added functionalities has been introduced. This variant of ACBEEMR aims to increase the lifetime of the network. The Modified ACBEEMR (MACBEEMR) has also been compared with other multipath protocols.


Sign in / Sign up

Export Citation Format

Share Document