scholarly journals Fetal Brain Abnormality Classification from MRI Images of Different Gestational Age

2019 ◽  
Vol 9 (9) ◽  
pp. 231 ◽  
Author(s):  
Attallah ◽  
Sharkas ◽  
Gadelkarim

Magnetic resonance imaging (MRI) is a common imaging technique used extensively to study human brain activities. Recently, it has been used for scanning the fetal brain. Amongst 1000 pregnant women, 3 of them have fetuses with brain abnormality. Hence, the primary detection and classification are important. Machine learning techniques have a large potential in aiding the early detection of these abnormalities, which correspondingly could enhance the diagnosis process and follow up plans. Most research focused on the classification of abnormal brains in a primary age has been for newborns and premature infants, with fewer studies focusing on images for fetuses. These studies associated fetal scans to scans after birth for the detection and classification of brain defects early in the neonatal age. This type of brain abnormality is named small for gestational age (SGA). This article proposes a novel framework for the classification of fetal brains at an early age (before the fetus is born). As far as we could know, this is the first study to classify brain abnormalities of fetuses of widespread gestational ages (GAs). The study incorporates several machine learning classifiers, such as diagonal quadratic discriminates analysis (DQDA), K-nearest neighbour (K-NN), random forest, naïve Bayes, and radial basis function (RBF) neural network classifiers. Moreover, several bagging and Adaboosting ensembles models have been constructed using random forest, naïve Bayes, and RBF network classifiers. The performances of these ensembles have been compared with their individual models. Our results show that our novel approach can successfully identify and classify numerous types of defects within MRI images of the fetal brain of various GAs. Using the KNN classifier, we were able to achieve the highest classification accuracy and area under receiving operating characteristics of 95.6% and 99% respectively. In addition, ensemble classifiers improved the results of their respective individual models.

Author(s):  
Anirudh Reddy Cingireddy ◽  
Robin Ghosh ◽  
Supratik Kar ◽  
Venkata Melapu ◽  
Sravanthi Joginipeli ◽  
...  

Frequent testing of the entire population would help to identify individuals with active COVID-19 and allow us to identify concealed carriers. Molecular tests, antigen tests, and antibody tests are being widely used to confirm COVID-19 in the population. Molecular tests such as the real-time reverse transcription-polymerase chain reaction (rRT-PCR) test will take a minimum of 3 hours to a maximum of 4 days for the results. The authors suggest using machine learning and data mining tools to filter large populations at a preliminary level to overcome this issue. The ML tools could reduce the testing population size by 20 to 30%. In this study, they have used a subset of features from full blood profile which are drawn from patients at Israelita Albert Einstein hospital located in Brazil. They used classification models, namely KNN, logistic regression, XGBooting, naive Bayes, decision tree, random forest, support vector machine, and multilayer perceptron with k-fold cross-validation, to validate the models. Naïve bayes, KNN, and random forest stand out as the most predictive ones with 88% accuracy each.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fareed Ahmad ◽  
Amjad Farooq ◽  
Muhammad Usman Ghani Khan ◽  
Muhammad Zubair Shabbir ◽  
Masood Rabbani ◽  
...  

Background: Francisella tularensis is a stealth pathogen fatal for animals and humans. Ease of its propagation, coupled with high capacity for ailment and death makes it a potential candidate for biological weapon. Objective: Work related to the pathogen’s classification and factors affecting its prolonged existence in soil is limited to statistical measures. Machine learning other than conventional analysis methods may be applied to better predict epidemiological modeling for this soil-borne pathogen. Method: Feature-ranking algorithms namely; relief, correlation and oneR are used for soil attribute ranking. Moreover, classification algorithms; SVM, random forest, naive bayes, logistic regression and MLP are used for classification of the soil attribute dataset for Francisella tularensis positive and negative soils. Results: Feature-ranking methods conclude; clay, nitrogen, organic matter, soluble salts, zinc, silt and nickel are the most significant attributes while potassium, phosphorous, iron, calcium, copper, chromium and sand are least contributing risk factors for the persistence of the pathogen. However, clay is the most significant and potassium is the least contributing attribute. Data analysis suggests that feature-ranking using relief produced classification accuracy of 84.35% for multilayer perceptron; 82.99% for linear regression; 80.27% for SVM and random forest; and 78.23% for naive bayes, which is better than other ranking methods. MLP outperforms other classifiers by generating an accuracy of 84.35%,82.99% and 81.63% for feature-ranking using relief, correlation and oneR algorithms, respectively. Conclusion: These models can significantly improve accuracy and can minimize the risk of incorrect classification. They further help in controlling epidemics and thereby minimizing the socio-economic impact on the society.


Information ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 374
Author(s):  
Badiuzzaman Pranto ◽  
Sk. Maliha Mehnaz ◽  
Esha Bintee Mahid ◽  
Imran Mahmud Sadman ◽  
Ahsanur Rahman ◽  
...  

Machine Learning has a significant impact on different aspects of science and technology including that of medical researches and life sciences. Diabetes Mellitus, more commonly known as diabetes, is a chronic disease that involves abnormally high levels of glucose sugar in blood cells and the usage of insulin in the human body. This article has focused on analyzing diabetes patients as well as detection of diabetes using different Machine Learning techniques to build up a model with a few dependencies based on the PIMA dataset. The model has been tested on an unseen portion of PIMA and also on the dataset collected from Kurmitola General Hospital, Dhaka, Bangladesh. The research is conducted to demonstrate the performance of several classifiers trained on a particular country’s diabetes dataset and tested on patients from a different country. We have evaluated decision tree, K-nearest neighbor, random forest, and Naïve Bayes in this research and the results show that both random forest and Naïve Bayes classifier performed well on both datasets.


2020 ◽  
Vol 12 (1) ◽  
pp. 20-38
Author(s):  
Winfred Yaokumah ◽  
Isaac Wiafe

Determining the machine learning (ML) technique that performs best on new datasets is an important factor in the design of effective anomaly-based intrusion detection systems. This study therefore evaluated four machine learning algorithms (naive Bayes, k-nearest neighbors, decision tree, and random forest) on UNSW-NB 15 dataset for intrusion detection. The experiment results showed that random forest and decision tree classifiers are effective for detecting intrusion. Random forest had the highest weighted average accuracy of 89.66% and a mean absolute error (MAE) value of 0.0252 whereas decision tree recorded 89.20% and 0.0242, respectively. Naive Bayes classifier had the worst results on the dataset with 56.43% accuracy and a MAE of 0.0867. However, contrary to existing knowledge, naïve Bayes was observed to be potent in classifying backdoor attacks. Observably, naïve Bayes performed relatively well in classes where tree-based classifiers demonstrated abysmal performance.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Vol 2021 (1) ◽  
pp. 1012-1018
Author(s):  
Handy Geraldy ◽  
Lutfi Rahmatuti Maghfiroh

Dalam menjalankan peran sebagai penyedia data, Badan Pusat Statistik (BPS) memberikan layanan akses data BPS bagi masyarakat. Salah satu layanan tersebut adalah fitur pencarian di website BPS. Namun, layanan pencarian yang diberikan belum memenuhi harapan konsumen. Untuk memenuhi harapan konsumen, salah satu upaya yang dapat dilakukan adalah meningkatkan efektivitas pencarian agar lebih relevan dengan maksud pengguna. Oleh karena itu, penelitian ini bertujuan untuk membangun fungsi klasifikasi kueri pada mesin pencari dan menguji apakah fungsi tersebut dapat meningkatkan efektivitas pencarian. Fungsi klasifikasi kueri dibangun menggunakan model machine learning. Kami membandingkan lima algoritma yaitu SVM, Random Forest, Gradient Boosting, KNN, dan Naive Bayes. Dari lima algoritma tersebut, model terbaik diperoleh pada algoritma SVM. Kemudian, fungsi tersebut diimplementasikan pada mesin pencari yang diukur efektivitasnya berdasarkan nilai precision dan recall. Hasilnya, fungsi klasifikasi kueri dapat mempersempit hasil pencarian pada kueri tertentu, sehingga meningkatkan nilai precision. Namun, fungsi klasifikasi kueri tidak memengaruhi nilai recall.


2014 ◽  
Vol 10 (S306) ◽  
pp. 288-291
Author(s):  
Lise du Buisson ◽  
Navin Sivanandam ◽  
Bruce A. Bassett ◽  
Mathew Smith

AbstractUsing transient imaging data from the 2nd and 3rd years of the SDSS supernova survey, we apply various machine learning techniques to the problem of classifying transients (e.g. SNe) from artefacts, one of the first steps in any transient detection pipeline, and one that is often still carried out by human scanners. Using features mostly obtained from PCA, we show that we can match human levels of classification success, and find that a K-nearest neighbours algorithm and SkyNet perform best, while the Naive Bayes, SVM and minimum error classifier have performances varying from slightly to significantly worse.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


2019 ◽  
Author(s):  
Thomas M. Kaiser ◽  
Pieter B. Burger

Machine learning continues to make strident advances in the prediction of desired properties concerning drug development. Problematically, the efficacy of machine learning in these arenas is reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance, are often taken together; however, insight into the dataset accuracy limitation of contemporary machine learning algorithms may yield insight into whether non-bench experimental sources of data may be used to generate useful machine learning models where there is a paucity of experimental data. We took highly accurate data across six kinase types, one GPCR, one polymerase, a human protease, and HIV protease, and intentionally introduced error at varying population proportions in the datasets for each target. With the generated error in the data, we explored how the retrospective accuracy of a Naïve Bayes Network, a Random Forest Model, and a Probabilistic Neural Network model decayed as a function of error. Additionally, we explored the ability of a training dataset with an error profile resembling that produced by the Free Energy Perturbation method (FEP+) to generate machine learning models with useful retrospective capabilities. The categorical error tolerance was quite high for a Naïve Bayes Network algorithm averaging 39% error in the training set required to lose predictivity on the test set. Additionally, a Random Forest tolerated a significant degree of categorical error introduced into the training set with an average error of 29% required to lose predictivity. However, we found the Probabilistic Neural Network algorithm did not tolerate as much categorical error requiring an average of 20% error to lose predictivity. Finally, we found that a Naïve Bayes Network and a Random Forest could both use datasets with an error profile resembling that of FEP+. This work demonstrates that computational methods of known error distribution like FEP+ may be useful in generating machine learning models not based on extensive and expensive in vitro-generated datasets.


Author(s):  
Arturo Rodriguez ◽  
Carlos R. Cuellar ◽  
Luis F. Rodriguez ◽  
Armando Garcia ◽  
V. S. Rao Gudimetla ◽  
...  

Abstract The Large Eddy Simulations (LES) modeling of turbulence effects is computationally expensive even when not all scales are resolved, especially in the presence of deep turbulence effects in the atmosphere. Machine learning techniques provide a novel way to propagate the effects from inner- to outer-scale in atmospheric turbulence spectrum and to accelerate its characterization on long-distance laser propagation. We simulated the turbulent flow of atmospheric air in an idealized box with a temperature difference between the lower and upper surfaces of about 27 degrees Celsius with the LES method. The volume was voxelized, and several quantities, such as the velocity, temperature, and the pressure were obtained at regularly spaced grid points. These values were binned and converted into symbols that were concatenated along the length of the box to create a ‘text’ that was used to train a long short-term memory (LSTM) neural network and propose a way to use a naive Bayes model. LSTMs are used in speech recognition, and handwriting recognition tasks and naïve Bayes is used extensively in text categorization. The trained LSTM and the naïve Bayes models were used to generate instances of turbulent-like flows. Errors are quantified, and portrait as a difference that enables our studies to track error quantities passed through stochastic generative machine learning models — considering that our LES studies have a high state of the art high-fidelity approximation solutions of the Navier-Stokes. In the present work, LES solutions are imitated and compare against generative machine learning models.


Sign in / Sign up

Export Citation Format

Share Document