scholarly journals Proposal of an Assessment Method of the Impact Sound Insulation of Lightweight Floors

Buildings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Łukasz Nowotny ◽  
Jacek Nurzyński

Lightweight floors are in line with a sustainable construction concept and have become increasingly popular in residential buildings. The acoustic performance of such floors plays a pivotal role in the overall building quality rating. There is, however, no clear and complete method to predict their impact sound insulation. A new approximation method and new acoustic indicators—equivalent weighted normalized impact sound pressure levels for lightweight floors—are proposed and outlined in this article. The prediction procedure and indicator values were initially validated on the basis of laboratory measurements taken for different lightweight floors with the same well-defined floor covering. These preliminary analyses and comparisons show that the proposed method is promising and should be fully developed on the basis of further research.

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Alejandra Naranjo ◽  
Andrés Colonia ◽  
Jaime Mesa ◽  
Heriberto Maury ◽  
Aníbal Maury-Ramírez

Green roof systems, a technology which was used in major ancient buildings, are currently becoming an interesting strategy to reduce the negative impact of traditional urban development caused by ground impermeabilization. Only regarding the environmental impact, the application of these biological coatings on buildings has the potential of acting as a thermal, moisture, noise, and electromagnetic barrier. At the urban scale, they might reduce the heat island effect and sewage system load, improve runoff water and air quality, and reconstruct natural landscapes including wildlife. In spite of these significant benefits, the current design and construction methods are not completely regulated by law because there is a lack of knowledge of their technical performance. Hence, this review of the current state of the art presents a proper green roof classification based on their components and vegetation layer. Similarly, a detailed description from the key factors that control the hydraulic and thermal performance of green roofs is given. Based on these factors, an estimation of the impact of green roof systems on sustainable construction certifications is included (i.e., LEED—Leadership in Energy and Environment Design, BREEAM—Building Research Establishment Environmental Assessment Method, CASBEE—Comprehensive Assessment System for Built Environment Efficiency, BEAM—Building Environmental Assessment Method, ESGB—Evaluation Standard for Green Building). Finally, conclusions and future research challenges for the correct implementation of green roofs are addressed.


2020 ◽  
Vol 27 (4) ◽  
pp. 367-379
Author(s):  
Joan Lluis Zamora Mestre ◽  
Andrea Niampira

The use of double-sheet enclosures with an intermediate non-ventilated air cavity guarantees a higher airborne sound insulation. The insulation advantages depend on air tightness and the placement of sound absorbing material in the air cavity. The lightweight ventilated façade is a system constructed by the addition of an external light cladding on a heavy single wall to establish an intermediate air cavity. This air cavity can be ventilated under controlled cooling effects, because of Sun’s radiation, and to reduce the risk of dampness caused by rainwater. Owing to this ventilation, acoustic insulation of the lightweight ventilated façade could be less effective. However, some authors indicate that air cavity moderate ventilation does not necessarily lead to a significant reduction in the airborne sound insulation. The authors previously verified this situation in a real building where the existing façade of masonry walls was transformed into a lightweight ventilated façade. The preliminary results indicate the acoustic benefits can be compatible with the hygrothermal benefits derived from controlled ventilation. This article presents the next step, the evaluation of the lightweight ventilated façade acoustic performance under laboratory conditions to revalidate the previous results and refining aspects as the air cavity thickness or the state of openings ventilation. The main results obtained indicate that the airborne sound insulation in laboratory is aligned with the previous results in a real building. Air cavity thickness from 110 to 175 mm and ventilation openings from 0% to 3.84% of the façade area does not lead to a significant reduction in the airborne sound insulation.


2021 ◽  
Vol 263 (1) ◽  
pp. 5595-5599
Author(s):  
Davi Akkerman ◽  
Paola Weitbrecht ◽  
Mariana Shieko ◽  
Marcel Borin ◽  
Leonardo Jacomussi

Considering Impact sound level requirements accomplishment in Brazil, floating floors are still considered as an inviable solution for building companies due to the implications in the total cost of building, mainly for social housing. Alternative and sometimes cheaper solutions are those undertaken in the receiver room. However, the lack of laboratory and field tests on the acoustic performance of this type of system is still a barrier for acoustic designing in Brazil. The aim of this paper is to study and validate different constructive solutions developed jointly with building companies for improving the impact sound insulation performance on the receiving room of new Brazilian housing constructions.


2021 ◽  
Vol 263 (6) ◽  
pp. 778-786
Author(s):  
Maedot S. Andargie ◽  
Marianne Touchie ◽  
William O'Brien

Multi-unit residential building (MURB) occupants often express dissatisfaction with their suites' acoustic conditions despite existing building acoustic standards and regulations as well as growing research on noise control and building acoustics. Reasons for this include the lack of proper characterization of acoustic comfort in MURBs and lack of comprehensive and stringent regulations. To better understand factors that impact acoustic comfort and explore strategies to improve the acoustic performance of MURBs, investigations of acoustic conditions were carried out. This work presents the results of the investigations which include subjective and objective evaluations of acoustic conditions in two MURBs. Impact sound insulation measurements using both a tapping machine and a rubber ball as well as 24-hour indoor noise monitoring were carried out in unoccupied suites. An online survey was then used to collect subjective assessments of the noise conditions in the buildings and the effects on occupants' comfort post occupancy. Results of the data analysis suggest that occupants are more sensitive to low-frequency impact sounds than mid- and high-frequency impact noise.


2021 ◽  
Vol 263 (4) ◽  
pp. 1989-1998
Author(s):  
Alessia Frescura ◽  
Pyoung Jik Lee ◽  
Jeong-Ho Jeong ◽  
Yoshiharu Soeta

The present study aimed to explore relationships between physiological and subjective responses to indoor sounds. Specifically, The electroencephalograms (EEG) responses to neighbour sounds in wooden dwellings were investigated. Listening tests were performed to collect EEG data in distinct acoustics scenarios. Experimental work was carried out in a laboratory with a low background noise level. A series of impact and airborne sounds were presented through loudspeakers and subwoofer, while participants sat comfortably in the simulated living room wearing the EEG headset (B-alert X24 system). The impact sound sources were an adult walking and a child running recorded in a laboratory equipped with different floor configurations. Two airborne sounds (a live conversation and a piece of classical piano music) were digitally filtered to resemble good and poor sound insulation performances of vertical partitions. The experiment consisted of two sessions, namely, the evaluation of individual sounds and the evaluation of the combined noise sources. In the second session, pairs of an impact and an airborne sound were presented. During the listening test, electroencephalography alpha reactivity (α-EEG) and electroencephalography beta reactivity (β-EEG) were monitored. In addition, participants were asked to rate noise annoyance using an 11-point scale.


1997 ◽  
Vol 4 (1) ◽  
pp. 39-50
Author(s):  
Michael A. Stewart ◽  
David J. MacKenzie ◽  
Robin K. Mackenzie

When impact sound tests are carried out in new and refurbished flats there is not normally a load on the floor. When the flat is occupied however, loading due to furniture, appliances, people etc, will occur which compresses the resilient layer if a floating floor construction has been used. The effect this has on impact sound insulation is considered in this paper. Impact sound transmission through a chipboard floating floor on battens supported on a concrete floor has been measured when static loads were placed on the chipboard – the loads were in the range 20 kg/m3 to 160 kg/m2. Three different resilient layers under the battens were tested: 25 mm mineral wool quilt, resilient battens and resilient battens on 13 mm mineral wool quilt. The weighted standardised impact sound pressure level (L'nTw) increased by 0.5 dB to 5 dB with the larger increases for the greater loads. Further measurements were made after the floating floors had been left under a static load of 200 kg/m2 for six months: there was an additional increase in L'nTw of 1.5 dB. Finally, measurements were compared with floors where the resilient layers had been soaked to simulate water leakage from baths, pipes etc; there was no significant difference in results.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1217 ◽  
Author(s):  
Łukasz Nowotny ◽  
Jacek Nurzyński

The acoustic performance of floors plays a primary role in the total quality rating of a residential building. The sound insulation of lightweight frame floors, which are increasingly being used in housing, depends on a number of factors and technical details. In effect, the sound transmission scheme is distinctly more complicated than in the case of homogeneous massive partitions. The aim of the study was to develop effective insulating layers of lightweight floors intended for use in residential buildings. The floor system should satisfy legal requirements in terms of airborne and impact sound insulation. The research was based on laboratory measurements taken in a standard test facility. Ten different models of wood and metal floors were considered. The acoustic performance of their basic structure was insufficient; however, the application of effective floating floors and suspended ceilings improved it greatly and succeeded in potential meeting requirements and satisfying most inhabitants’ expectations. The results demonstrate how different lightweight floor components influence the acoustic performance of the floor and how the insulating layers cooperate when applied together. The findings will be useful in working on a new floor design and optimizing its structure in terms of acoustics.


2009 ◽  
Vol 15 (4) ◽  
pp. 612-630 ◽  
Author(s):  
Marjana Šijanec Zavrl ◽  
Roko Žarnić ◽  
Jana Šelih

A simple method for the assessment of sustainability of a residential building is proposed. The method consists of two steps. First, areas that influence sustainability level of the building (e.g. building architecture, design, in‐built materials) are identified. For each area, several elements and corresponding indicators are determined. Depending on their nature, the indicators are expressed either in quantitative or qualitative terms. The impact areas and their corresponding elements influence all three aspects of sustainability. In the second step, the indicators are aggregated according to their influence on individual sustainability aspects. Special attention is placed to the determination of weights assigned to the indicators in order to make the assessment method relevant in the local context. Initially, the consensus‐based method within the research team was used as a technique for aggregated indicators’ weighting. Later, the open discourses among the developers and stakeholders, as well as surveys, were employed to determine the aggregated indicators’ weights. The proposed method is applied to a selected sample building, and the analysis of the results is carried out. The results obtained show that the completeness and reliability of the input data is crucial for the reliability of the proposed assessment method. Subjectivity in evaluators’ judgments required to score some indicators needs to be reduced by introducing adequate training of the assessors. The feedback from the potential users shows that the method has a potential for wider future implementation in practice. Santrauka Straipsnyje siūlomas paprastas gyvenamųjų namų darnos vertinimo metodas. Šiuo metodu skaičiuojama dviem etapais. Pirmuoju etapu nustatomi kriterijai, darantys įtaką pastato darnos lygiui (pavyzdžiui, pastato architektūra, konstrukcija, medžiagos). Nustatomi keli kiekvieną kriterijų apibūdinantys rodikliai. Priklausomai nuo pobūdžio jie gali būti kiekybiniai arba kokybiniai ir gali apibūdinti visus tris darnos aspektus. Antruoju etapu rodikliai sugrupuojami pagal jų įtaką atskiriems darnos aspektams. Ypatingas dėmesys skiriamas rodiklių reikšmingumų nustatymui. Tai vertinimo metodą daro tinkamą konkrečioms sąlygoms. Rodiklių reikšmingumai nustatomi grupės ekspertų nuomonių sutarimo metodu. Vėliau reikšmingumai tikslinami diskusijoje tarp susinteresuotų grupių narių. Pasiūlytas metodas pritaikytas pasirinktam tipiniam pastatui, atlikta gautų rezultatų analizė. Rezultatai atskleidė, jog pradinių duomenų išsamumas ir tikrumas daro lemiamą įtaką pasiūlyto vertinimo metodo patikimumui. Tinkamai apmokant vertintojus galima sumažinti kai kurių rodiklių vertinimo subjektyvumą. Potencialių vartotojų reakcija rodo, kad ateityje šis metodas gali būti plačiai taikomas.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Barry Marshall Gibbs ◽  
Michel Villot

This article coincides with recent publications of international standards, which provide methods of predicting the performance of both heavyweight and lightweight buildings in terms of airborne sound insulation and impact sound isolation, from the performance of individual elements such as walls and floors. The performances of the elements are characterized by the sound reduction index and the impact sound pressure level. To predict the sound pressure level due to vibrating sources (i.e., mechanical installations, water services and other appliances), source data are required in a form appropriate as input for prediction models similar to the above, i.e., as equivalent single quantities and frequency band-averaged values. Three quantities are required for estimating the structure-borne power for a wide range of installation conditions: activity (the free velocity or the blocked force of the operating source), source mobility (or the inverse, impedance) and receiver mobility (or impedance) of the connected building element. Methods are described for obtaining these source quantities, including by using laboratory reception plates. The article concludes with a proposed database, based on laboratory measurements and simple mobility calculations, which provides a practical approach to predicting structureborne sound in buildings.


Sign in / Sign up

Export Citation Format

Share Document