scholarly journals Upgrading the Smartness of Retrofitting Packages towards Energy-Efficient Residential Buildings in Cold Climate Countries: Two Case Studies

Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200 ◽  
Author(s):  
Laurina C. Felius ◽  
Mohamed Hamdy ◽  
Fredrik Dessen ◽  
Bozena Dorota Hrynyszyn

Improving the energy efficiency of existing buildings by implementing building automation control strategies (BACS) besides building envelope and energy system retrofitting has been recommended by the Energy Performance of Buildings Directive (EPBD) 2018. This paper investigated this recommendation by conducting a simulation-based optimization to explore cost-effective retrofitting combinations of building envelope, energy systems and BACS measures in-line with automation standard EN 15232. Two cases (i.e., a typical single-family house and apartment block) were modeled and simulated using IDA Indoor Climate and Energy (IDA-ICE). The built-in optimization tool, GenOpt, was used to minimize energy consumption as the single objective function. The associated difference in life cycle cost, compared to the reference design, was calculated for each optimization iteration. Thermal comfort of the optimized solutions was assessed to verify the thermal comfort acceptability. Installing an air source heat pump had a greater energy-saving potential than reducing heat losses through the building envelope. Implementing BACS achieved cost-effective energy savings up to 24%. Energy savings up to 57% were estimated when BACS was combined with the other retrofitting measures. Particularly for compact buildings, where the potential of reducing heat losses through the envelope is limited, the impact of BACS increased. BACS also improved the thermal comfort.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


Author(s):  
Sobhy Issam ◽  
Brakez Abderrahim ◽  
Brahim Benhamou

Abstract This paper aims at identifying the impact of three retrofit scenarios of a typical single family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates, which range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19-42% and the cooling load by 29-60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reason of this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6%-10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulting material, in the hot climates. The analysis of the energy performance, the thermal comfort indices and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the Cold climate where the RTCM scenario is the most favorable.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4723
Author(s):  
Carlos Herce ◽  
Enrico Biele ◽  
Chiara Martini ◽  
Marcello Salvio ◽  
Claudia Toro

The implementation of monitoring tools and energy management systems (EnMSs) supports companies in their long-term energy efficiency strategies, and they are essential to analyse the effectiveness of energy performance improvement actions (EPIAs). The first fundamental step towards increasing energy efficiency is the development of energy audits (EAs). EAs provide comprehensive information about the energy usage in a specific facility, identifying and quantifying cost-effective EPIAs. The crucial role of these tools in clean energy transition is remarked by the European Energy Efficiency Directive (EED), which promotes the implementation of EAs and EnMS programmes. The purpose of this work is to better understand the link between EnMSs (specifically ISO 50001) and EAs in the EED Article 8 implementation in two industrial and two tertiary sectors in Italy. Moreover, the impact of company size, energy monitoring systems, and EnMSs on planned and/or implemented EPIAs is analysed. Our findings show that, albeit the complexity of the variables involved in energy efficiency gap, the “energy savings/company” and “EPIA/site” ratios are higher in enterprises with an EnMS and monitoring system. Thus, a correct energy audit must always be accompanied by a specific monitoring plan if it is to be effective and useful to the company decision maker.


2020 ◽  
Vol 64 (2) ◽  
pp. 145-149
Author(s):  
Rastislav Ingeli ◽  
Peter Buday

Reduction of energy use in buildings is an important measure to achieve climate changes of mitigation. It is essential to minimize heat losses when designing energy efficient buildings. For energy efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. In compliance with the today's trend of designing sustainable and energy-saving architecture, it is necessary firstly to solve the factors influencing the energy balance. This year the subsidy for houses has been valued at € 8,000. The condition is that the building is classified in the energy class A0 according to the Energy Performance Act. Energy class A0 characterizes nearly zero energy buildings. The main concern is for the public to become interested in such buildings. The subsidy is designed to reward and promote those buildings that their heat and technical characteristics and modern technical equipment that meet energy class. In addition to a good plan to raise the profile of such buildings, there has been a lot of speculation to help make buildings in energy class A0. They are mainly owners of family houses where there is no gasification and are forced to have electricity as a source of heat and hot water. Electricity has a high primary energy factor, which means that buildings do not have to be approved.


2017 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Gjergji Simaku

The expertise on building stock typology used openly available data from the Albanian statistical office. As the CENSUS was not especially designed for gathering data for the energetic evaluation of the building stock, some data were not available on the required level of detail. Estimations were necessary to extrapolate data to the existing stock. Technically, the study selected and described twenty representative categories of residential buildings typology for Albania. Were identified the level and the structure of final energy consumption at present and in the future by building age category, building type, climate zone, and energy end-use. Using an original template excel data sheet, were conducted the calculations of their thermal energy performance in three climate zones, designed standardized retrofit packages, calculated possible energy savings, and investment required by building type. The engineering principle of the Regulation in force, regarding to the legislative act of Energy Building Code in Albania, is beyond any doubt correct and carefully studied. The act is a rule book or the Regulation (energy building code - here The Code) which contains information that is sufficient to perform calculations of the different insulating layers for new construction after the year 2003. Also, the Regulation’s algorithms are still relevant in terms of calculation to provide Energy for heating demands in Albania. After 12 years, the Code remains the same and could provide either an optimal potential energy savings to the existing buildings, or an optimal cost-effective of building’s insulation without imposing a burden of high financial housing builders to multifamily prospective buyers. Based today Europe’s developments on Energy Performance of Buildings, the study is found relevant to provide a methodology for calculation of the energy performance in buildings (kWh/ m2a) based on volumetric coefficient heat losses (Gvt) for heating only, the existing indicator of the existing Code. The following study deals with the possibility of transposing the methodology used to the Code into an energy Performance based on minimum requirement for a new Regulation and/or EP Calculation Methodology based on efficient use of energy for heating and cooling purposes.


2019 ◽  
Vol 111 ◽  
pp. 02049 ◽  
Author(s):  
Qianwen Guo ◽  
Ryozo Ooka ◽  
Wonseok Oh ◽  
Wonjun Choi ◽  
Doyun Lee

Appropriate insulation materials, with unique physical properties and of moderate thickness, are essential for energy savings in residential buildings. However, the impact of thermal insulation on indoor thermal comfort with floor heating systems has not been studied extensively. In this study, simulations of a typical Japanese detached house were conducted with four different thicknesses of insulation material in the walls, ceiling, and floor to estimate the mean air temperature (MAT), mean radiant temperature (MRT), floor temperature, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). The results showed that increasing the thickness of thermal insulation increased the MAT and MRT by 1.4 – 4.0 ℃ and 1.3 – 4.4 ℃, respectively. Moreover, as the thickness of the thermal insulation increased, the floor temperature rose and exhibited smaller fluctuations. Finally, it was found that increasing the thickness of thermal insulation improved the indoor thermal comfort environment, as evidenced by an increase in the PMV from –1.0 to 0.3, and a decrease in the PPD from 25.1% to 9.5%.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2946
Author(s):  
Aiman Albatayneh ◽  
Mustafa Jaradat ◽  
Mhd Bashar AlKhatib ◽  
Ramez Abdallah ◽  
Adel Juaidi ◽  
...  

Any building’s design should sustain thermal comfort for occupants and promote less energy usage during its lifetime using accurate building retrofits to convert existing buildings into low-energy buildings so that the heating and cooling loads can be minimized. Regarding the methodology adopted in this research, an energy model of an educational building located at the German Jordanian University in Jordan was constructed utilizing DesignBuilder computer software. In addition, it was calibrated utilizing real energy consumption data for a 12-month simulation of energy performance. Subsequently, a computerized evaluation of the roles of building envelope retrofits or the adaptive thermal comfort limits in the reduction of the overall building energy consumption was analyzed. The results of the study show that the current building’s external wall insulation, roof insulation, glazing, windows, and external shading devices are relatively energy-efficient but with high cost, resulting in significant financial losses, even though they achieved noticeable energy savings. For instance, equipping the building’s ventilation system with an economizer culminated in the highest financial profit, contributing to an annual energy savings of 155 MWh. On the other hand, in an occupant-centered approach, applying the adaptive thermal comfort model in wider ranges by adding 1 °C, 2 °C, and 3 °C to the existing operating temperatures would save a significant amount of energy with the least cost (while maintaining indoor thermal comfort), taking over any retrofit option. Using different adaptive thermal comfort scenarios (1 °C, 2 °C, and 3 °C) led to significant savings of around 5%, 12%, and 21%, respectively. However, using different retrofits techniques proved to be costly, with minimum energy savings compared to the adaptive approach.


2020 ◽  
Vol 172 ◽  
pp. 18009
Author(s):  
Kalle Kuusk ◽  
Jens Naumann ◽  
Annina Gritzki ◽  
Clemens Felsmann ◽  
Michele De Carli ◽  
...  

Revised EPBD directive has set ambitious targets for renovation. It is stated that Member States shall establish a long-term strategy facilitating the cost-effective transformation of existing buildings into nearly-zero energy buildings. The long-term strategy should set out a roadmap with a view to the long-term 2050 goal of reducing greenhouse gas emissions in the European Union. This creates the need for cost-efficient renovation solutions which can be implemented in large scale. The impact assessment shows that roughly a doubled renovation rate of 3 % would be needed to accomplish the energy efficiency ambitions in a cost-effective manner. The objective of this study is to specify renovation concepts with adequate heating and ventilation, based on Estonian and German apartment buildings and corresponding local solutions. Energy performance and sizing analyses were conducted for selected multifamily apartment buildings typical for 1960-70es with three different renovation concepts. Energy calculations were conducted with national energy calculation methods and national energy requirements for major renovation. In the renovation, the building envelope insulation, air tightness, and heating and ventilation systems were improved so that the renovated building complies with national nearly zero-energy requirement for major renovation.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 405
Author(s):  
Amy Huynh ◽  
Regina Dias Barkokebas ◽  
Mohamed Al-Hussein ◽  
Carlos Cruz-Noguez ◽  
Yuxiang Chen

Due to the energy and environmental impacts attributed to the operational phase of the building sector, efforts have been made to improve building energy performance through the implementation of restrictive energy requirements by regulatory bodies. In this context, the primary objective of this paper is to investigate and compare regulations that govern the building envelope energy performance of new residential buildings in cold-climate regions, primarily in Canada, Finland, Iceland, Norway, Sweden, China, and Russia. The aim is to identify similarities and dissimilarities among the energy regulations of these countries, as well as potentials for development of more effective building codes. This study verifies that the investigated energy requirements diverge considerably—for instance, the required thermal resistance per unit area of above-grade exterior walls in Sweden is almost two times that of a similar climate zone in Canada. Based on the comparisons and case analyses, recommendations for energy requirements pertinent to building envelope of new residential buildings in cold-climate regions are proposed.


Author(s):  
Kelen Almeida Dornelles

The use of cool materials on the building envelope is one of the most cost-effective ways to increase indoor thermal comfort conditions in hot climates and decrease the cooling energy needs. Despite the benefit of reducing cooling loads, researches have demonstrated that aging of roof coatings changes the initial SR, which influences the long term building thermal and energy performance. Thus, this work presents preliminary natural weathering tests performed on samples of nine white coatings exposed to natural weathering for one year in the city of Sao Carlos, Brazil. Solar reflectances were measured with a spectrophotometer before and after exposure, every 3 months, for identifying the effect of aging along the time. The findings showed a decrease on the SR from 13% to 23% after one year of natural weathering, with higher decrease for rougher surfaces. The cleaning process restored from 90% to 100% of the original SR, which means maintenance can be an effective solution to restore the initial SR. Simulations indicated that roofs with higher SR increase indoor thermal comfort conditions and decrease the cooling energy need for buildings in hot climates, but the aging of white coatings increased the cooling energy needs along the time.


Sign in / Sign up

Export Citation Format

Share Document