scholarly journals Energy-Efficiency Requirements for Residential Building Envelopes in Cold-Climate Regions

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 405
Author(s):  
Amy Huynh ◽  
Regina Dias Barkokebas ◽  
Mohamed Al-Hussein ◽  
Carlos Cruz-Noguez ◽  
Yuxiang Chen

Due to the energy and environmental impacts attributed to the operational phase of the building sector, efforts have been made to improve building energy performance through the implementation of restrictive energy requirements by regulatory bodies. In this context, the primary objective of this paper is to investigate and compare regulations that govern the building envelope energy performance of new residential buildings in cold-climate regions, primarily in Canada, Finland, Iceland, Norway, Sweden, China, and Russia. The aim is to identify similarities and dissimilarities among the energy regulations of these countries, as well as potentials for development of more effective building codes. This study verifies that the investigated energy requirements diverge considerably—for instance, the required thermal resistance per unit area of above-grade exterior walls in Sweden is almost two times that of a similar climate zone in Canada. Based on the comparisons and case analyses, recommendations for energy requirements pertinent to building envelope of new residential buildings in cold-climate regions are proposed.

2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.


Author(s):  
Junjie Liu ◽  
Xiaojie Zhou ◽  
Zhihong Gao

With the development of energy saving, it is needed to calculate the energy consumption of the residential building, particularly accurate dynamic energy consumption. Fixed shading devices are wildly used to save building energy because they prevent undesirable heat coming through the windows during the “overheated period”, just as in summer, which can ameliorate the indoor environments and reduce the energy consumption of air-conditioning in summer. But they will also prevent solar energy which can be used in winter to enter windows. So it is very important to be able to determine the optimal shading devices of windows. The overhangs and vertical-shading devices are representative to study the different energy performance in summer and winter, in an actual dwell house. On the other hand, fixed shading devices can weaken the effect of daylighting, so we would take both the total energy consumption and rooms’ daylighting into account. In this study, we choose several typical dwelling houses in different cities located in north, south, west, east and central region of China respectively. We calculated energy consumption of those models by using Energyplus program, and compared the shading performance of horizontal and vertical shading devices, then optimal configuration dimensions of horizontal shading devices are recommended on the basis of different requirements for solar heat gains in winter and in summer for those typical dwelling houses.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200 ◽  
Author(s):  
Laurina C. Felius ◽  
Mohamed Hamdy ◽  
Fredrik Dessen ◽  
Bozena Dorota Hrynyszyn

Improving the energy efficiency of existing buildings by implementing building automation control strategies (BACS) besides building envelope and energy system retrofitting has been recommended by the Energy Performance of Buildings Directive (EPBD) 2018. This paper investigated this recommendation by conducting a simulation-based optimization to explore cost-effective retrofitting combinations of building envelope, energy systems and BACS measures in-line with automation standard EN 15232. Two cases (i.e., a typical single-family house and apartment block) were modeled and simulated using IDA Indoor Climate and Energy (IDA-ICE). The built-in optimization tool, GenOpt, was used to minimize energy consumption as the single objective function. The associated difference in life cycle cost, compared to the reference design, was calculated for each optimization iteration. Thermal comfort of the optimized solutions was assessed to verify the thermal comfort acceptability. Installing an air source heat pump had a greater energy-saving potential than reducing heat losses through the building envelope. Implementing BACS achieved cost-effective energy savings up to 24%. Energy savings up to 57% were estimated when BACS was combined with the other retrofitting measures. Particularly for compact buildings, where the potential of reducing heat losses through the envelope is limited, the impact of BACS increased. BACS also improved the thermal comfort.


2020 ◽  
Vol 12 (9) ◽  
pp. 3566
Author(s):  
Byung Chang Kwag ◽  
Sanghee Han ◽  
Gil Tae Kim ◽  
Beobjeon Kim ◽  
Jong Yeob Kim

The purposes of this study were to overview the building-energy policy and regulations in South Korea to achieve energy-efficient multifamily residential buildings and analyze the effects of strengthening the building design requirements on their energy performances. The building energy demand intensity showed a linear relationship with the area-weighted average U-values of the building envelope. However, improving the thermal properties of the building envelope was limited to reducing the building-energy demand intensity. In this study, the effects of various energy conservation measures (ECMs) on the building-energy performance were compared. Among the various ECMs, improving the boiler efficiency was found to be the most efficient measure for reducing the building-energy consumption in comparison to other ECMs, whereas the building envelope showed the least impact, because the current U-values are low. However, in terms of the primary energy consumption, the most efficient ECM was the lighting power density because of the different energy sources used by various ECMs and the different conversion factors used to calculate the primary energy consumption based on the source type. This study showed a direction for updating the building-energy policy and regulations, as well as the potential of implementing ECMs, to improve the energy performances of Korean multifamily residential buildings.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1565-1569
Author(s):  
Yu Ze Tian ◽  
Yang Yu

This paper introduces the present situation of existing residential building energy saving reconstruction of Anshan area, the result of the analysis is that the renovation of retaining structure is the key of the reconstruction of existing residential buildings of Anshan. Exterior wall area ratio of the total area of the building envelope accounts for quite large, so transformation of exterior wall is the key. Energy saving wall approach divided into external wall insulation and exterior insulation. Analysis of energy-saving measures by the external wall insulation, and the external wall of a residential district in Anshan city and analysis of thermal insulation and energy saving renovation case, better energy-saving effect, energy saving measures of external economy more external insulation, the region has provided the reference and basis transformation of external wall energy-saving residence building.


2021 ◽  
Vol 899 (1) ◽  
pp. 012009
Author(s):  
A C Karanafti ◽  
T G Theodosiou

Abstract Improving the energy efficiency of residential buildings is of outmost importance for reducing their environmental footprint. Recent studies demonstrate that a highly insulated building envelope may burden the building’s performance during the cooling period, especially in regions with hot summers. In this study, the energy performance of a residential building in different Mediterranean regions (Jordan, Greece, Iraq, Egypt, Syria, Morocco, Cyprus, Saudi Arabia, Libya, and Spain) is investigated. Two thermal transmittance values are applied to the building shell, a scenario with a very low one and a scenario with a higher one, to examine under which conditions the cooling performance is improved. A dynamic insulation configuration is also implemented, and its operation is studied for the cooling period of each city. It is concluded that in Southern European and Northern African regions building envelopes with lower thermal resistances perform better, while in even Southern regions an increased thermal resistance may prevent the heat from entering the building more effectively. With the switching insulation system, a great reduction in the cooling demands was reported, which reached up to 50% in Spain, and it was shown that in the southern regions the configuration’s operation should be customized to the ambient conditions to optimize its performance.


2019 ◽  
Vol 136 ◽  
pp. 04096
Author(s):  
Lingkun Jia ◽  
Yiru Huang ◽  
Zhietie Yue ◽  
Perry Pei-Ju Yang

As one of the critical concepts in residential energy performance research field, shape coefficient has long been disputed for its validity of evaluating energy consumption. Although suggestions have been brought forward to try to optimize this concept, these proposals still have shortcomings and have not been tested. Based on analysing these existing optimizing proposals, this paper starts from prototype study and summarizes the problems of concept of shape coefficient in terms of definition and relationship with building energy. According to these current issues, the reason for negatively influencing the accuracy of shape coefficient with regard to assessing the building energy consumption is confirmed. By correcting the expression of shape coefficient through inserting a correction factor related to story height, corrected shape coefficient is proposed. Combined with built residential building samples, the corrected and original shape coefficient is contrasted at the macro statistical and micro experimental levels respectively. It is found that the new coefficient has closer correlation with residential building energy performance and is more accurate in evaluating the energy consumption.


2019 ◽  
Vol 11 (22) ◽  
pp. 6473 ◽  
Author(s):  
He ◽  
Ng ◽  
Hossain ◽  
Skitmore

The building envelope plays a significant role in the energy performance of buildings and windows are a key element in transmitting heating and cooling between the indoor and outdoor environment, and hence an adequate window system is one of the most important retrofit strategies of existing buildings for energy conservation. Therefore, this study presents a method with a theoretical case study to examine the improvement of energy efficiency in a typical high-rise residential building through window retrofitting. A building energy design model in Designbuilder along with a building information modeling (BIM) model in Revit are developed, with 20 common potential glazing alternatives being analyzed to predict the potential energy savings in the same case building with identical orientation located in a variety of climate zones in China. Based on different parameters and considerations, the results demonstrated that the currently relatively expensive low-e window glazing has the best energy performance in all climate zones, but is sufficiently close to conventionally glazed windows in its energy efficiency to discourage its adoption at present, and that, instead, a single dark conventional glazed window is preferred in a hot summer/warm winter climate, double dark traditional glazing in a hot summer/cold winter climate, and a double clear conventional window in a cold climate. Based on the simulated results, an indicative suggestion was provided to select an adequate window system for residential building retrofitting in the studied climates or similar climatic regions.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5724 ◽  
Author(s):  
Irati Uriarte ◽  
Aitor Erkoreka ◽  
Pablo Eguia ◽  
Enrique Granada ◽  
Koldo Martin-Escudero

The existing performance gap between the design and the real energy consumption of a building could have three main origins: the occupants’ behaviour, the performance of the energy systems and the performance of the building envelope. Through the estimation of the in-use Heat Loss Coefficient (HLC), it is possible to characterise the building’s envelope energy performance under occupied conditions. In this research, the estimation of the HLC of two individual residential buildings located in Gainsborough and Loughborough (UK) was carried out using an average method. This average method was developed and successfully tested in previous research for an occupied four-story office building with very different characteristics to individual residential buildings. Furthermore, one of the analysed residential buildings is a new, well-insulated building, while the other represents the old, poorly insulated semidetached residential building typology. Thus, the monitored data provided were filtered in order to apply the abovementioned average method. Even without fulfilling all the average method requirements for these two residential buildings, the method provides reliable HLC values for both residential buildings. For the house in Gainsborough, the best estimated HLC value was 60.2 W/K, while the best approach for Loughborough was 366.6 W/K. Thus, despite the uncertainty sources found during the analysis, the method seems promising for its application to residential buildings.


2021 ◽  
Vol 16 (3) ◽  
pp. 109-134
Author(s):  
Suwen Jiang ◽  
Chen Wang ◽  
Jeffrey Boon Hui Yap ◽  
Heng Li ◽  
Lincoln C. Wood ◽  
...  

ABSTRACT The window system is generally regarded as the most vulnerable building system for the indoor energy performance of green buildings. Window systems are given significant attention by architects and engineers, especially in areas with long summer and high solar radiation such as the subtropics. This study aims to develop a standard window-to-floor ratio (WFR) system for green residential buildings in the subtropics. Using Autodesk Revit as the interface, a real high-rise residential building was digitalized and imported into Ecotect for energy consumption analysis. Comparative analyses were conducted to determine the optimal WFR for building energy efficiency. Results demonstrated 0.23 as the optimal WFR in Xiamen, one of the typical subtropical cities in Asia. Furthermore, accompanied by a four-sidefins sunshade device and a double glass window (DGW) with clear “glass+air gap+reflective” glass, the building energy consumption was further reduced by 34.47% compared to the initial model, which successfully met the optimization target of 30%, set according to the green building standard. The results of this study are helpful to architects and building engineers when designing or retrofitting green buildings as we provide specific support for design features for energy performance.


Sign in / Sign up

Export Citation Format

Share Document