scholarly journals User’s Lifestyle and the Thermal Performance of the Compound House: An Appraisal

Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Olugbenga S Fashuyi ◽  
Mohammed T Alfa

This study examines the impact of thermal performance of Yoruba compound house on the user’s lifestyle to cope with discomfort hours. A compound house was simulated using Autodesk Ecotect software. The study found that the front and right sides of the building have the lowest temperatures due to the combined effects of indirect and interzonal heat transfers. The research highlighted that while the user’s lifestyle in the Yoruba compound house relies on the veranda to cope with discomfort hours, residents of multi-dwelling compound houses rely on a lifestyle of housing adjustments. The study concludes that the thermal properties of the Yoruba compound house are complemented by the user’s lifestyle to cope with the discomfort hours.

2021 ◽  
Author(s):  
Hamideh (Roya) Nosrati

Aerogel-enhanced insulating materials provide significantly higher thermal resistance per unit of thickness compared to conventional insulating materials. These superinsulation materials are relatively new in the construction industry, and their thermal properties under different hygric conditions and their durability are still unknown. In this study, the main characteristics of a variety of aerogel-based materials under different climatic conditions were studied. Furthermore, the samples underwent accelerated aging tests, and the impact of aging on the thermal performance of aerogel-based products was investigated. The results showed that the thermal properties of aerogel-based products are affected by moisture content and their thermal resistance degraded under extreme humidity conditions. The analysis of the aging effects showed that aerogel-based products would maintain their superior thermal performance over time. The average increase in the thermal conductivity (compared to the pristine condition) was below 10% after the equivalent of twenty years of aging under various climatic factors.


2016 ◽  
Vol 28 (6) ◽  
pp. 805-819 ◽  
Author(s):  
Anna Katarzyna Dabrowska

Purpose The purpose of this paper is to analyze the impact of design solutions used in clothing on the thermal resistance of the material systems from which the clothing is made, design solutions used in clothing on its thermal insulation and clothing size on its thermal insulation properties. Design/methodology/approach This study involved laboratory tests of clothing protecting against cold and textile systems used in this type of garment using a “skin model” test stand and a thermal manikin. Findings Analysis of the results obtained from tests carried out showed that the design solutions used in a garment can model its local and overall insulation. It was found that using a bib in trousers has a dominant influence on the thermal properties of clothing. An important parameter is also the use of a hood, as well as the length of the jacket. No significant effect of other structural solutions, such as jacket fastening, pockets and reflective tapes, on the thermal performance of the clothing set was noted. Originality/value Although the reports available in the literature pay a lot of attention to the impact of the design of clothing protecting against cold on its thermal performance, most of the presented research results relate to the aspects of fit, whereas the analyses of the effects of other aspects of garment construction on thermal properties are lacking. Therefore, the analysis of the impact of design solutions used in clothing on its thermal insulation properties is a key original factor of this paper.


2021 ◽  
Author(s):  
Hamideh (Roya) Nosrati

Aerogel-enhanced insulating materials provide significantly higher thermal resistance per unit of thickness compared to conventional insulating materials. These superinsulation materials are relatively new in the construction industry, and their thermal properties under different hygric conditions and their durability are still unknown. In this study, the main characteristics of a variety of aerogel-based materials under different climatic conditions were studied. Furthermore, the samples underwent accelerated aging tests, and the impact of aging on the thermal performance of aerogel-based products was investigated. The results showed that the thermal properties of aerogel-based products are affected by moisture content and their thermal resistance degraded under extreme humidity conditions. The analysis of the aging effects showed that aerogel-based products would maintain their superior thermal performance over time. The average increase in the thermal conductivity (compared to the pristine condition) was below 10% after the equivalent of twenty years of aging under various climatic factors.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2016 ◽  
Vol 37 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Yong-Chan Chung ◽  
Byung Hee Lee ◽  
Jae Won Choi ◽  
Byoung Chul Chun

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 425
Author(s):  
Yunyu Tang ◽  
Haiyan Zhang ◽  
Yu Wang ◽  
Chengqi Fan ◽  
Xiaosheng Shen

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darina Czamara ◽  
Elleke Tissink ◽  
Johanna Tuhkanen ◽  
Jade Martins ◽  
Yvonne Awaloff ◽  
...  

AbstractLasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.


Sign in / Sign up

Export Citation Format

Share Document