scholarly journals Hygrothermal Analysis And Prediction Of Long-Term Thermal Performance Of Aerogel-Enhanced Superinsulation Products

Author(s):  
Hamideh (Roya) Nosrati

Aerogel-enhanced insulating materials provide significantly higher thermal resistance per unit of thickness compared to conventional insulating materials. These superinsulation materials are relatively new in the construction industry, and their thermal properties under different hygric conditions and their durability are still unknown. In this study, the main characteristics of a variety of aerogel-based materials under different climatic conditions were studied. Furthermore, the samples underwent accelerated aging tests, and the impact of aging on the thermal performance of aerogel-based products was investigated. The results showed that the thermal properties of aerogel-based products are affected by moisture content and their thermal resistance degraded under extreme humidity conditions. The analysis of the aging effects showed that aerogel-based products would maintain their superior thermal performance over time. The average increase in the thermal conductivity (compared to the pristine condition) was below 10% after the equivalent of twenty years of aging under various climatic factors.

2021 ◽  
Author(s):  
Hamideh (Roya) Nosrati

Aerogel-enhanced insulating materials provide significantly higher thermal resistance per unit of thickness compared to conventional insulating materials. These superinsulation materials are relatively new in the construction industry, and their thermal properties under different hygric conditions and their durability are still unknown. In this study, the main characteristics of a variety of aerogel-based materials under different climatic conditions were studied. Furthermore, the samples underwent accelerated aging tests, and the impact of aging on the thermal performance of aerogel-based products was investigated. The results showed that the thermal properties of aerogel-based products are affected by moisture content and their thermal resistance degraded under extreme humidity conditions. The analysis of the aging effects showed that aerogel-based products would maintain their superior thermal performance over time. The average increase in the thermal conductivity (compared to the pristine condition) was below 10% after the equivalent of twenty years of aging under various climatic factors.


2017 ◽  
Vol 20 (1) ◽  
pp. 1-6
Author(s):  
Jana Lendelová ◽  
Ingrid Karandušovská ◽  
Miroslav Žitňák ◽  
Štefan Boďo ◽  
Štefan Mihina

Abstract The aim of this experiment was to analyse the influence of climatic factors on the thermal performance of separated liquid manure. The samples of organic bedding were collected from the lying area of dairy housing and preparatory store. The measurement of properties of recycled manure solids (RMS) was carried out in laboratory conditions. Samples were examined with determining the temperature effect on the thermal conductivity λ of ’dry‘ separated liquid manure (with a dry matter content of 60%) and ’wet‘ liquid manure (with a dry matter content of 26%), in air temperatures ranging from 0 °C to 40 °C. Subsequently, the thermal resistance of three selected types of cows lying structures was calculated for winter and summer boundary values. Based on the results of thermal conductivity and thermal resistance, it was observed that dry separated liquid manure as an alternative bedding has, in low temperature (up to 5 °C), the most suitable thermal performance if it is maintained in a dry condition (with a dry matter content of 60%). With increasing temperature (above 20 °C) and increasing humidity of bedding (below 26%), thermo-technical properties get worse; however, when comparing the thermal resistance of the cow bed structure with sandwich mattresses with a 50 mm layer of organic bedding and the deep cubicle filled with 200 mm of organic bedding, the thermal resistance of floor structure decreases by 7.6% or 18.4%, respectively. With a proper handling of the recycled organic bedding, it is possible to use its economic advantages.


Author(s):  
Nikolaj Dobrzinskij ◽  
Algimantas Fedaravicius ◽  
Kestutis Pilkauskas ◽  
Egidijus Slizys

Relevance of the article is based on participation of armed forces in various operations and exercises, where reliability of machinery is one of the most important factors. Transportation of soldiers as well as completion of variety of tasks is ensured by properly functioning technical equipment. Reliability of military vehicles – armoured SISU E13TP Finnish built and HMMWV M1025 USA built were selected as the object of the article. Impact of climatic conditions on reliability of the vehicles exploited in southwestern part of the Atlantic continental forest area is researched by a case study of the vehicles exploitation under conditions of the climate of Lithuania. Reliability of military vehicles depends on a number of factors such as properties of the vehicles and external conditions of their operation. Their systems and mechanisms are influenced by a number of factors that cause different failures. Climatic conditions represent one of the factors of operating load which is directly dependent on the climate zone. Therefore, assessment of the reliability is started with the analysis of climatic factors affecting operating conditions of the vehicles. Relationship between the impact of climatic factors and failure flow of the vehicles is presented and discussed.


2021 ◽  
Author(s):  
Douglas Belanger

Understanding material thermal conductivity is fundamental in high performance building design. This property is often advertised using a single value implied to be constant, though research shows that insulating materials have an effective conductivity that changes over a range of environmental parameters, including temperature and moisture levels. Various polyurethane and polyisocyanurate materials are analyzed in order to determine how the effective conductivity is altered by accelerated aging, obtained through exposure to high temperature, moisture, and freeze-thaw cycling. The measured results are used in hygrothermal simulations to determine the assumed and actual performance of insulating materials in the context of high performance wall and roof assemblies in cold climates. Results show that effects of aging and environmental temperature have higher impacts on the performance of polyisocyanurate materials than polyurethanes. Additionally, high moisture levels contribute to lower performance in all foam materials, with open cell materials experiencing the greatest performance reduction.


Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3275
Author(s):  
Aminhossein Jahanbin ◽  
Giovanni Semprini ◽  
Andrea Natale Impiombato ◽  
Cesare Biserni ◽  
Eugenia Rossi di Schio

Given that the issue of variations in geometrical parameters of the borehole heat exchanger (BHE) revolves around the phenomenon of thermal resistance, a thorough understanding of these parameters is beneficial in enhancing thermal performance of BHEs. The present study seeks to identify relative changes in the thermal performance of double U-tube BHEs triggered by alterations in circuit arrangements, as well as the shank spacing and the borehole length. The thermal performance of double U-tube BHEs with different configurations is comprehensively analyzed through a 3D transient numerical code developed by means of the finite element method. The sensitivity of each circuit configuration in terms of the thermal performance to variations of the borehole length and shank spacing is investigated. The impact of the thermal interference between flowing legs, namely thermal short-circuiting, on parameters affecting the borehole thermal resistance is addressed. Furthermore, the energy exchange characteristics for different circuit configurations are quantified by introducing the thermal effectiveness coefficient. The results indicate that the borehole length is more influential than shank spacing in increasing the discrepancy between thermal performances of different circuit configurations. It is shown that deviation of the averaged-over-the-depth mean fluid temperature from the arithmetic mean of the inlet and outlet temperatures is more critical for lower shank spacings and higher borehole lengths.


2020 ◽  
Vol 148 ◽  
Author(s):  
B. Tinto ◽  
S. Salinas ◽  
A. Dicko ◽  
T. S. Kagone ◽  
I. Traore ◽  
...  

Abstract Although the African continent is, for the moment, less impacted than the rest of the world, it still faces the risk of a spread of COVID-19. In this study, we have conducted a systematic review of the information available in the literature in order to provide an overview of the epidemiological and clinical features of COVID-19 pandemic in West Africa and of the impact of risk factors such as comorbidities, climatic conditions and demography on the pandemic. Burkina Faso is used as a case study to better describe the situation in West Africa. The epidemiological situation of COVID-19 in West Africa is marked by a continuous increase in the numbers of confirmed cases. This geographic area had on 29 July 2020, 131 049 confirmed cases by polymerase chain reaction, 88 305 recoveries and 2102 deaths. Several factors may influence the SARS-CoV-2 circulation in Africa: (i) comorbidities: diabetes mellitus and high blood pressure could lead to an increase in the number of severe cases of SARS-CoV-2; (ii) climatic factors: the high temperatures could be a factor contributing to slow the spread of the virus and (iii) demography: the West Africa population is very young and this could be a factor limiting the occurrence of severe forms of SARS-CoV-2 infection. Although the spread of the SARS-CoV-2 epidemic in West Africa is relatively slow compared to European countries, vigilance must remain. Difficulties in access to diagnostic tests, lack of hospital equipment, but also the large number of people working in the informal sector (such as trading, businesses, transport and restoration) makes it difficult to apply preventive measures, namely physical distancing and containment.


Author(s):  
Shenghui Lei ◽  
Alexandre Shen ◽  
Ryan Enright

Silicon photonics has emerged as a scalable technology platform for future optotelectronic communication systems. However, the current use of SiO2-based silicon-on-insulator (SOI) substrates presents a thermal challenge to integrated active photonic components such as lasers and semiconductor optical amplifiers due to the poor thermal properties of the buried SiO2 optical cladding layer beneath these devices. To improve the thermal performance of these devices, it has been suggested that SiO2 be replaced with aluminum nitride (AlN); a dielectric with suitable optical properties to function as an effective optical cladding that, in its crystalline state, demonstrates a high thermal conductivity (∼100× larger than SiO2 in current SOI substrates). On the other hand, the tuning efficiencies of thermally-controlled optical resonators and phase adjusters, crucial components for widely tunable lasers and modulators, are directly proportional to the thermal resistance of these devices. Therefore, the low thermal conductivity buried SiO2 layer in the SOI substrate is beneficial. Moreover, to further improve the thermal performance of these devices air trenches have been used to further thermally isolate these devices, resulting in up to ∼10× increase in tuning efficiency. Here, we model the impact of changing the buried insulator on a SOI substrate from SiO2 to high quality AlN on the thermal performance of a MRR. We map out the thermal performance of the MRR over a wide range of under-etch levels using a thermo-electrical model that incorporates a pseudo-etching approach. The pseudo-etching model is based on the diffusion equation and distinguishes the regions where substrate material is removed during device fabrication. The simulations reveal the extent to which air trenches defined by a simple etch pattern around the MRR device can increase the thermal resistance of the device. We find a critical under-etch below which no benefit is found in terms of the MRR tuning efficiency. Above this critical under-etch, the tuning efficiency increases exponentially. For the SiO2-based MRR, the thermal resistance increases by ∼7.7× between the un-etched state up to the most extreme etch state. In the unetched state, the thermal resistance of the AlN-based MRR is only ∼4% of the SiO2-based MRR. At the extreme level of under-etch, the thermal resistance of the AlN-based MRR is still only ∼60% of the un-etched SiO2-based MRR. Our results suggest the need for a more complex MRR thermal isolation strategy to significantly improve tuning efficiencies if an AlN-based SOI substrate is used.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 155
Author(s):  
Olugbenga S Fashuyi ◽  
Mohammed T Alfa

This study examines the impact of thermal performance of Yoruba compound house on the user’s lifestyle to cope with discomfort hours. A compound house was simulated using Autodesk Ecotect software. The study found that the front and right sides of the building have the lowest temperatures due to the combined effects of indirect and interzonal heat transfers. The research highlighted that while the user’s lifestyle in the Yoruba compound house relies on the veranda to cope with discomfort hours, residents of multi-dwelling compound houses rely on a lifestyle of housing adjustments. The study concludes that the thermal properties of the Yoruba compound house are complemented by the user’s lifestyle to cope with the discomfort hours.


2020 ◽  
Vol 2020 (2) ◽  
pp. 21-26
Author(s):  
Sergey Vladimirovich Golovko ◽  
Dmitry Anatolyevich Zadorkin

The article outlines the problem of the influence of climatic factors on the efficiency of solar panels operation. Not long ago the idea of free electricity seemed incredible. However, the development of technologies rapidly progresses, and the alternative energy captures more and more supporters every day. The popularity of solar panels is growing quite rapidly, since photovoltaic converters are an efficient source of electricity. But for more efficient operation of solar cells it is necessary to create the specific conditions, taking into account the location of the unit. There have been considered the factors of more efficient operation of the photovoltaic converters: the hash climatic conditions and the intensity of solar radiation depending on the angle of reducing the impact of the solar rays onto the solar cell surface.


Sign in / Sign up

Export Citation Format

Share Document