scholarly journals Viability of Activated Carbon Derived from Polystyrene Sulphonate Beads as Electrical Double Layer Capacitors

2021 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Gbenro Babajide Folaranmi ◽  
Anthony Ekennia ◽  
Nkiruka Chidiebere Ani ◽  
Richard Chukwuemeka Ehiri

In this paper, a commercial polymeric resin precursor (polystyrene sulphonate beads) was used as a source of carbon spheres. The resin was pyrolyzed at different temperatures (700, 800, and 900 °C) and the resulting carbons were analyzed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). From the result of EIS, carbon spheres obtained at 700 °C (CS−700) have the least ohmnic resistance and highest capacitance. In furtherance, the resin was chemically activated with iron (III) chloride FeCl3·6H2O at different concentration (0.1 M, 0.3 M, and 0.5 M) and pyrolyzed at 700 °C to obtain activated carbon sphere namely (ACS 700−0.1, ACS 700−0.3, and ACS 700−0.5) in which the last digit of the samples denotes the concentration of FeCl3. Scanning electron microscope (SEM) showed that the carbon is of spherical shape; X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and X-ray photon electron spectroscopy (XPS) revealed successful introduction of Fe on the surface of the carbon. Out of all the activated carbon spheres, ACS 700−0.1 exhibited highest double layer capacitance of 9 µF cm−2 and lowest charge transfer resistance of 3.33 KΩ·cm2. This method shows that carbon spheres obtained from a polymeric source can be easily improved by simple resin modification and the carbon could be a potential candidate for an electrical double layer capacitor

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Réka Barabás ◽  
Carmen Ioana Fort ◽  
Graziella Liana Turdean ◽  
Liliana Bizo

In the present work, ZrO2-based composites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP) to the inert zirconia. The composites were synthesized by the conventional ceramic processing route and morpho-structurally analyzed by X-ray powder diffraction (XRPD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two metallic dental alloys (i.e., Ni–Cr and Co–Cr) coated with a chitosan (Chit) membrane containing the prepared composites were exposed to aerated artificial saliva solutions of different pHs (i.e., 4.3, 5, 6) and the corrosion resistances were investigated by electrochemical impedance spectroscopy technique. The obtained results using the two investigated metallic dental alloys shown quasi-similar anticorrosive properties, having quasi-similar charge transfer resistance, when coated with different ZrO2-based composites. This behavior could be explained by the synergetic effect between the diffusion process through the Chit-composite layer and the roughness of the metallic electrode surface.


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


Author(s):  
Syed Abbas Raza ◽  
Muhammad Imran Khan ◽  
Muhammad Ramzan Abdul karim ◽  
Rashid Ali ◽  
Muhammad Umair Naseer ◽  
...  

Abstract Equiatomic TiNi alloy composites, reinforced with 0, 5, 10 and 15 vol. % ZrO2, were synthesized using conventional sintering approach. Equiatomic TiNi pre-alloyed powder and ZrO2 powder were mixed in planetary ball mill for 6 hours followed by cold compaction and pressure-less sintering, respectively. The sintered density was found to vary inversely with the addition of ZrO2 content. The X-Ray diffraction spectra have shown the formation of multiple-phases which were resulted from the decomposition of the B19'and B2 phases of the equiatomic TiNi alloy due to the addition of ZrO2 and higher diffusion rate of Ni than that of Ti in the alloy composite. An increase in hardness was noted due to the addition of ZrO2, measured by micro and nanoindentation techniques. Potentiodynamic polarization scan revealed a 10% decrease in the corrosion rate of the composite containing 10 vol. % ZrO2. Electrochemical impedance spectroscopy results indicated an increase in passive layer resistance (Rcoat) due to the increase in charge transfer resistance (Rct) caused by the reduced leaching of ions from the surface.


2009 ◽  
Vol 1236 ◽  
Author(s):  
Gaurav Chatterjee ◽  
Manish Bothara ◽  
Srivatsa Aithal ◽  
Vinay J Nagraj ◽  
Peter Wiktor ◽  
...  

AbstractChanges in protein glycosylation have great potential as markers for the early diagnosis of cancer and other diseases. The current analytical tools for the analysis of glycan structures need expensive instrumentation, advanced expertise, is time consuming and therefore not practical for routine screening of glycan biomarkers from human samples in a clinical setting.We are developing a novel ultrasensitive diagnostic platform called ‘NanoMonitor’ to enable rapid label-free glycosylation analysis. The technology is based on electrochemical impedance spectroscopy where capacitance changes are measured at the electrical double layer interface as a result of interaction of two molecules.The NanoMonitor platform consists of a printed circuit board with array of electrodes forming multiple sensor spots. Each sensor spot is overlaid with a nanoporous alumina membrane that forms a high density of nanowells. Lectins, proteins that bind to and recognize specific glycan structures, are conjugated to the surface of nanowells. When specific glycoproteins from a test sample bind to lectins in the nanowells, it produces a perturbation to the electrical double layer at the solid/liquid interface at the base of each nanowell. This perturbation results in a change in the impedance of the double layer which is dominated by the capacitance changes within the electrical double layer.The nanoscale confinement or crowding of biological macromolecules within the nanowells is likely to enhance signals from the interaction of glycoproteins with the lectins leading to a high sensitivity of detection with the NanoMonitor as compared to other electrochemical techniques.Using a panel of lectins, we were able to detect subtle changes in the glycosylation of fetuin protein as well as differentiate glycoproteins from normal versus cancerous cells. Our results indicate that NanoMonitor can be used as a cost-effective miniature electronic biosensor for the detection of glycan biomarkers.


Sign in / Sign up

Export Citation Format

Share Document