scholarly journals Increased Electrical Conductivity of Carbon Nanotube Fibers by Thermal and Voltage Annealing

2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Varun Shenoy Gangoli ◽  
Chris J. Barnett ◽  
James D. McGettrick ◽  
Alvin Orbaek White ◽  
Andrew R. Barron

We report the effect of annealing, both electrical and by applied voltage, on the electrical conductivity of fibers spun from carbon nanotubes (CNTs). Commercial CNT fibers were used as part of a larger goal to better understand the factors that go into making a better electrical conductor from CNT fibers. A study of thermal annealing in a vacuum up to 800 °C was performed on smaller fiber sections along with a separate analysis of voltage annealing up to 7 VDC; both exhibited a sweet spot in the process as determined by a combination of a two-point probe measurement with a nanoprobe, resonant Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Scaled-up tests were then performed in order to translate these results into bulk samples inside a tube furnace, with similar results that indicate the potential for an optimized method of achieving a better conductor sample made from CNT fibers. The results also help to determine the surface effects that need to be overcome in order to achieve this.

2021 ◽  
Vol 1206 (1) ◽  
pp. 012028
Author(s):  
Sk Faruque Ahmed ◽  
Mohibul Khan ◽  
Nillohit Mukherjee

Abstract Silicon incorporated carbon nanotube (Si-CNTs) thin films was prepared by radio frequency plasma enhanced chemical vapor deposition technique. Tetraethyl orthosilicate solution was used for incorporation of silicon in CNTs thin films. Energy dispersive X-ray analysis shows that the silicon atomic percentage was varied from 0 % to 6.1 %. The chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy data. The various peaks at ~531 eV, ~ 285 eV, ~155 eV and ~104 eV was observed in the XPS spectra due to the oxygen, carbon and silicon respectively. Surface morphologies of Si-CNTs thin films have been analyzed by field emission scanning electron microscopy, which revels that the length of the silicon incorporated carbon nanotubes ~500 nm and corresponding diameter ~80 nm. The room temperature electrical conductivity was increased whereas the activation energy was decreased with the increase of atomic percentage of silicon in Si-CNTs thin films. The room temperature electrical conductivity was increased from 4.3 × 103 to 7.1 × 104 S cm−1 as the silicon atomic percentage in Si-CNTs thin films increases from 0 to 6.1 % respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sekhar Chandra Ray

A comparative study has been made for the non-catalyst based few layer graphene (FLG) and Fe-catalyst based multiwall carbon nanotubes (MWCNTs). Magnetic and electronic properties of FLG and MWCNTs were studied using magnetic M-H hysteresis loops and synchrotron radiation based X-ray absorption fine structure spectroscopy measurements. Structural defects and electronic and bonding properties of FLG/MWCNTs have been studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). The work functions of FLG and MWCNTs are 4.01 eV and 3.79 eV, respectively, obtained from UPS (He-I) spectra. UPS (He-II) results suggest that the density of states (DOS) of MWCNTs is higher than FLG and is consistent with Raman spectroscopy result that shows the defect of MWCNTs is higher than FLG. The magnetic coercivity (Hc) of the MWCNTs (~750 Oe) is higher than FLG (~85 Oe) which could be used for various technological magnetic applications.


2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2014 ◽  
Vol 809-810 ◽  
pp. 43-52
Author(s):  
Hua Hua Wang ◽  
Nan Li ◽  
Kai Li ◽  
Yuan Bu ◽  
Wen Le Dai ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) as an excellent supporter covered with a thick layer of cobalt phthalocyanine (CoPc) were prepared by in-situ synthesis. Platinum particles were adopted to enhance the conductivity of CoPc-MWCNTs. The final nanocomposite Pt-CoPc-MWCNTs was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Strong aromatic π-π stacking between MWCNTs and CoPc made CoPc in-situ forming on MWCNTs. With homogeneous thickness of CoPc covered on the MWCNTs and Pt particles equally distributed, the nanocomposite was used as electrocatalyst. The electrochemical properties of the composite got researched by casting the dispersion of Pt-CoPc-MWCNTs on the glassy carbon electrode. Compared with other modified electrodes, Pt-CoPc-MWCNTs/GC electrode exhibited excellent electrochemical activity towards dopamine (DA) and uric acid (UA). Linear responses for DA and UA were obtained in the ranges of 5 to 170 μM and 5 to 100 μM, and limits of detection were 2.6 and 1.4 μM (S/N= 3), respectively. Simultaneous detection of DA and UA in the presence of ascorbic acid (AA) also displayed selective property, with no interference to each other.


Nanoscale ◽  
2015 ◽  
Vol 7 (24) ◽  
pp. 10719-10727 ◽  
Author(s):  
Daqi Zhang ◽  
Juan Yang ◽  
Feng Yang ◽  
Ruoming Li ◽  
Meihui Li ◽  
...  

An ωRBM–dt relation specifically suitable for random SWNTs on SiO2/Si substrates grown by various catalysts.


Sign in / Sign up

Export Citation Format

Share Document