scholarly journals Blockade of Lactate Dehydrogenase-A (LDH-A) Improves Efficacy of Anti-Programmed Cell Death-1 (PD-1) Therapy in Melanoma

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 450 ◽  
Author(s):  
Saeed Daneshmandi ◽  
Barbara Wegiel ◽  
Pankaj Seth

Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients. We have recently reported that programmed cell death protein-1 (PD-1) ligand (PD-L1) expression is regulated by lactate present at high levels in the tumor microenvironment (TME). We hypothesized that the efficacy of anti-PD-1 treatment can be improved by blocking the lactate-generating enzyme, lactate dehydrogenase-A (LDH-A). Anti-PD-1 treatment of mice harboring LDH-A deficient B16-F10 melanoma tumors led to an increase in anti-tumor immune responses compared to mice implanted with tumors expressing LDH-A. Specifically, we observed heightened infiltration of natural killer (NK) cells and CD8+ cytotoxic T cells in the LDH-A deficient tumors. These infiltrated cytotoxic cells had an elevated production of interferon-γ (IFN-γ) and granzyme B. Mechanistically, CD8+ T cells isolated from the TME of LDH-A deficient B16-F10 melanoma tumors and treated with anti-PD-1 showed enhanced mitochondrial activity and increased reactive oxygen species (ROS) levels. Moreover, infiltration of T regulatory (Treg) cells was diminished in LDH-A deficient tumors treated with anti-PD-1. These altered immune cell profiles were clinically relevant as they were accompanied by significantly reduced tumor growth. Our study suggests that blocking LDH-A in the tumor might improve the efficacy of anti-PD-1 therapy.

2021 ◽  
pp. 1-10
Author(s):  
Ravi Medikonda ◽  
John Choi ◽  
Ayush Pant ◽  
Laura Saleh ◽  
Denis Routkevitch ◽  
...  

OBJECTIVE Immune checkpoint inhibitors such as anti–programmed cell death protein 1 (anti-PD-1) have shown promise for the treatment of cancers such as melanoma, but results for glioblastoma (GBM) have been disappointing thus far. It has been suggested that GBM has multiple mechanisms of immunosuppression, indicating a need for combinatorial treatment strategies. It is well understood that GBM increases glutamate in the tumor microenvironment (TME); however, the significance of this is not well understood. The authors posit that glutamate upregulation in the GBM TME is immunosuppressive. The authors utilized a novel glutamate modulator, BHV-4157, to determine synergy between glutamate modulation and the well-established anti-PD-1 immunotherapy for GBM. METHODS C57BL/6J mice were intracranially implanted with luciferase-tagged GL261 glioma cells. Mice were randomly assigned to the control, anti-PD-1, BHV-4157, or combination anti-PD-1 plus BHV-4157 treatment arms, and median overall survival was assessed. In vivo microdialysis was performed at the tumor site with administration of BHV-4157. Intratumoral immune cell populations were characterized with immunofluorescence and flow cytometry. RESULTS The BHV-4157 treatment arm demonstrated improved survival compared with the control arm (p < 0.0001). Microdialysis demonstrated that glutamate concentration in TME significantly decreased after BHV-4157 administration. Immunofluorescence and flow cytometry demonstrated increased CD4+ T cells and decreased Foxp3+ T cells in mice that received BHV-4157 treatment. No survival benefit was observed when CD4+ or CD8+ T cells were depleted in mice prior to BHV-4157 administration (p < 0.05). CONCLUSIONS In this study, the authors showed synergy between anti-PD-1 immunotherapy and glutamate modulation. The authors provide a possible mechanism for this synergistic benefit by showing that BHV-4157 relies on CD4+ and CD8+ T cells. This study sheds light on the role of excess glutamate in GBM and provides a basis for further exploring combinatorial approaches for the treatment of this disease.


2021 ◽  
Vol 27 (1) ◽  
pp. 144-156
Author(s):  
Gyu Sang Yoo ◽  
Won-Gyun Ahn ◽  
Shin-Yeong Kim ◽  
Wonseok Kang ◽  
Changhoon Choi ◽  
...  

Background/Aims: The abscopal effect, a rare phenomenon induced by radiation, can be reinforced by immunotherapy. Although radiation therapy and immunotherapy are increasingly being utilized for the treatment of hepatocellular carcinoma (HCC), whether immunotherapy could boost the abscopal effect remains unclear. In this study, we aimed to elucidate the immunological mechanisms underlying the abscopal effect induced by the combination of irradiation and immunotherapy in a murine HCC model.Methods: A syngeneic HCC mouse model was established by transplanting murine Hepa 1–6 HCC cells into both hind legs of immunocompetent C57BL/6 mice. The tumors on the right hind legs were irradiated, and abscopal effects were observed in the non-irradiated tumors on the left hind leg with or without the coadministration of anti-programmed cell death 1 (PD-1) antibodies. Flow cytometric analyses were performed to analyze the distributions of immune cells infiltrating both irradiated and non-irradiated tumors and the tumor-draining lymph nodes (TDLNs).Results: Administration of 16 Gy in two fractions more effectively inhibited the growth of both irradiated and nonirradiated tumors with higher tumor infiltration of cytotoxic T cells than 8 Gy did in a single fraction. The higher dose also increased activated dendritic cells in TDLNs, which had higher expression of the programmed cell death ligand 1. Coadministration of anti-PD-1 antibodies significantly enhanced the abscopal effect and increased infiltration of activated cytotoxic T cells in both irradiated and non-irradiated tumors.Conclusions: Our findings show that adding anti-PD-1 therapy to radiation enhanced the abscopal effect in a syngeneic murine model of HCC.


2021 ◽  
Author(s):  
Lin Cui ◽  
Xiaotong Gu ◽  
Haixia Liu ◽  
Hong Zheng

Abstract Background: Autoimmune thyroid disease(AITD) is a frequent autoimmune disease characterized by lymphocytic infiltration and thyroid autoantibody production caused by autoimmune dysfunction. Recent studies have shown that Treg cells can participate in the pathogenesis of AITD by inhibiting peripheral reactive T cells and thereby inhibiting the autoimmune responses. Programmed cell death-1 (PD-1)/programmed cell death ligand (PD-L1) pathway is a negative costimulatory pathway discovered in recent years, enhancing or blocking this pathway is associated with the immune process of AITD. PD-1/PD-L1 was simultaneously expressed on Treg cells. In this paper, the role of regulatory T cells and PD-1/PD-L1 signaling pathway in AITD was discussed.Methods: We detected the percentage of CD4+CD25+CD127lowT cells, the ratio of PD-1+Treg cells and PD-L1+Treg cells in peripheral blood of twenty patients newly diagnosed with graves disease (GD) and twenty-one patients newly diagnosed with Hashimotos’thyroiditis (HT) patients by flow cytometry, and samples from twenty healthy individuals served as control.Results: The results demonstrated that the proportion of CD4+CD25+CD127lowT cells in peripheral blood of HT patients was lower than that of healthy controls(HCs), the ratio of PD-1+Treg cells of HT patients was higher than that of the HCs and GD patients, the ratio of PD-1+Treg cells of GD patients was higher than that of the HCs, the ratio of PD-L1+Treg cells in Treg cells of HT patients was higher than that of the HCs and GD patients and the ratio of PD-L1+Treg cells of GD patients was higher than that of the HCs. All the above were statistically significant.Conclusions: The treg cells play an obvious role in hashimoto's thyroiditis, but not obvious in Graves' disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
M. Niedźwiecki ◽  
O. Budziło ◽  
M. Zieliński ◽  
E. Adamkiewicz-Drożyńska ◽  
L. Maciejka-Kembłowska ◽  
...  

CD4+CD25highCD127low/−FoxP3+ regulatory T cells (Tregs) are currently under extensive investigation in childhood acute lymphoblastic leukemia (ALL) and in other human cancers. Usually, Treg cells maintain the immune cell homeostasis. This small subset of T cells has been, in fact, considered to be involved in the pathogenesis of autoimmune diseases and progression of acute and chronic leukemias. However, whether Treg dysregulation in CLL and ALL plays a key role or it rather represents a simple epiphenomenon is still a matter of debate. Treg cells have been proposed as a prognostic indicator of the clinical course of the disease and might also be used for targeted immune therapy. Our study revealed statistically higher percentage of Treg cells in the bone marrow than in peripheral blood in the group of 42 children with acute lymphoblastic leukemia. By analyzing Treg subpopulations, it was shown that only memory Tregs in contact with leukemic antigens showed statistically significant differences. We noticed a low negative correlation between Treg cells in the bone marrow and the percentage of blasts (R=−0.36) as well as a moderate correlation between Treg cells in the bone marrow and Hb level (R=+0.41) in peripheral blood before therapy. The number of peripheral blood blasts on day 8th correlates negatively (R=−0.36) with Tregs. Furthermore, statistical analysis revealed low negative correlation between the number of Tregs in the bone marrow and the minimal residual disease measured on day 15th, the percentage of blasts in the bone marrow and leukocytosis after 15 days of chemotherapy. These results indicate the influence of Tregs on the final therapeutic effect.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A795-A795
Author(s):  
Hyeonbin Cho ◽  
Jae-Hwan Kim ◽  
Ji-Hyun Kim

BackgroundCancer immunotherapy (CIT) has substantially improved the survival of cancer patients. However, according to recent studies, liver metastasis was reported to predict worse outcomes for CIT. The main objective of the study is to evaluate the differences in the immune microenvironment (IME) between the primary lung cancer (PL) and synchronous liver metastasis (LM) using a multispectral imaging system.MethodsSix immune markers (CD4, CD8, CTLA-4, granzyme B (GZB), Foxp3 and PD-L1) were analyzed using a multiplex IHC system and inForm program (Akoya) on paired lung-liver samples of 10 patients. Cells were categorized into tumor nest and stroma, and cell counts per unit area were measured for comparison.ResultsThe number of tumor-infiltrating cytotoxic T cells (TIL) in PL (262.5 cells/mm2) was higher than that of LM (113.3 cells/mm2). Additionally, the ratio between the number of TIL and non-TIL was greater in PL (0.31) compared to that of LM (0.26). A similar trend appeared for Helper T cells and regulatory T cells (Treg), as PL consisted of higher numbers of T cells (791.8 Helper T cells/mm2, 195.7 Treg/mm2) than LM (626.3 Helper T cells/mm2, 121.3 Treg/mm2). However, cytotoxic T cells exhibiting GZB+ and CTLA-4- were fewer in PL (140.2 cells/mm2) than in LM (203.3 cells/mm2), and the ratio is 0.69. The mean number of GZB+ TIL in PL (32.5 cells/mm2) was lower than in LM (35.3 cells/mm2), and their proportions among total TIL counts were 0.12 and 0.31, respectively. In PL, GZB+: GZB- ratio is 0.16 while the ratio is 1.91 for LM. A fewer number of TILs exhibiting GZB suggests that PL has lower efficiency in immune response than LM. Another crucial checkpoint receptor that inhibits immune response, CTLA-4, was more prevalent in PL, with CTLA-4+: CTLA-4- ratio in Treg being 0.36 in PL, compared to 0.11 in LM. The tumor proportion score (TPS) of PD-L1 was higher in PL than LM (40.0 vs. 6.6).ConclusionsIn our study, we showed the differences in the numbers of TIL or regulatory T cells and expressions of immune checkpoint receptors (PD-L1, CTLA-4), which significantly influence outcomes for CIT. The study is ongoing to confirm different IME between the PL and LM groups in a larger tumor cohort.ReferencesPeng, Jianhong, et al., Immune Cell Infiltration in the Microenvironment of Liver Oligometastasis from Colorectal Cancer: Intratumoural CD8/CD3 Ratio Is a Valuable Prognostic Index for Patients Undergoing Liver Metastasectomy. Cancers 2019 Dec; 11(12): 1922. https://doi.org/10.3390/cancers11121922Tumeh, Paul C., et al., Liver Metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res 2017 May; 5(5): 417–424. doi: 10.1158/2326-6066.CIR-16-0325Parra, E.R., Immune Cell Profiling in Cancer Using Multiplex Immunofluorescence and Digital Analysis Approaches; Streckfus, C.F., Ed.; IntechOpen: London, UK, 2018; pp. 1–13. doi: 10.5772/intechopen.80380Ribas, A., Hu-Lieskovan, S., What does PD-L1 positive or negative mean?. The Journal of Experimental Medicine 2016;213(13):2835–2840. https://doi.org/10.1084/jem.20161462


2016 ◽  
Vol 4 (10) ◽  
pp. 845-857 ◽  
Author(s):  
Blanca Homet Moreno ◽  
Jesse M. Zaretsky ◽  
Angel Garcia-Diaz ◽  
Jennifer Tsoi ◽  
Giulia Parisi ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ece Esin

In the last decade, we have gained a deeper understanding of innate immune system. The mechanism of the continuous guarding of progressive mutations happening in a single cell was discovered and the production and the recognition of tumor associated antigens by the T-cells and elimination of numerous tumors by immune-editing were further understood. The new discoveries on immune mechanisms and its relation with carcinogenesis have led to development of a new class of drugs called immunotherapeutics. T lymphocyte-associated antigen 4, programmed cell death protein 1, and programmed cell death protein ligand 1 are the classes drugs based on immunologic manipulation and are collectively known as the “checkpoint inhibitors.” Checkpoint inhibitors have shown remarkable antitumor efficacy in a broad spectrum of malignancies; however, the strongest and most durable immune responses do not last long and the more durable responses only occur in a small subset of patients. One of the solutions which have been put forth to overcome these challenges is combination strategies. Among the dual use of methods, a backbone with either PD-1 or PD-L1 antagonist drugs alongside with certain cytotoxic chemotherapies, radiation, targeted drugs, and novel checkpoint stimulators is the most promising approach and will be on stage in forthcoming years.


2021 ◽  
pp. 107815522110381
Author(s):  
Esra Özyurt ◽  
Serhat Özçelik ◽  
Heves Sürmeli ◽  
Mehmet Çelik ◽  
Murat Ayhan ◽  
...  

Introduction Nivolumab is a human immunoglobulin G4 monoclonal antibody that inhibits programmed cell death-1 activity by binding to the programmed cell death-1 receptors. Cancer cells express increased number of programmed cell death-1 ligands and this allows them to escape the cytotoxic effects of the T cells. Therefore, the negative programmed cell death-1 receptor signal regulates T-cell proliferation and activation is disrupted. However, this change in the activity of the T cells can cause them to lose their ability to recognize host cells. The immune response enabled by these agents has led to side effects, commonly known as “immune-related adverse events.” Case report We report a case of a 66-year-old male patient who was treated with nivolumab for recurrent renal cell carcinoma presented with hepatitis and adrenalitis. Three weeks after starting nivolumab, the patient had abdominal pain and weakness, and then aspartate and alanine transaminase levels were found to be elevated. Management and outcome Hepatitis was predicted to be due to nivolumab, because other causes were excluded. He started using oral methylprednisolone and then, hepatitis improved. However, while receiving methylprednisolone treatment, fludrocortisone was started with the pre-diagnosis of adrenalitis due to the persistence of fatigue, weakness, and hyponatremia and hyperkalemia. With both treatments, the patient's symptoms and sodium and potassium level returned to normal. Discussion This case emphasizes the need for patient's education and awareness of immune-related adverse events, and the importance of understanding the management of life-threatening complications of the checkpoint inhibitors, because these side effects require prompt recognition and treatment.


Sign in / Sign up

Export Citation Format

Share Document